徐松;侯晓荣
s级p阶辛Runge-Kutta-Nystr\"om(R-K-N)方法的一种充要条件是用关于参数的非线性方程组来表示的,辛R-K-N格式的构造问题因而转化为该方程组的求解问题. 在一些特殊的限定条件下, 已有该方程组在s=3,p=4时的两组解,即得到了两个三级四阶显式辛格式. 对于s=3,p=4情形,基于吴方法,利用计算机代数系统Maple及软件包wsolve给出了对应的非线性方程组的全部解, 这样就构造了所有的三级四阶显式辛R-K-N格式, 并证明了三级四阶显式辛R-K-N方法所满足的
条件方程有冗余. 数值实验结果显示出新的辛格式在一定的条件下有着较好的误差精度.