王丙参, 魏艳华, 张宝学
探讨充分降维算法SIR、SAVE、CP-SAVE的适用范围,从两种角度对充分降维算法进行稳健改进:构建SIR与SAVE混合算法,从而融合二者优点,以适应更广数据类型与连接函数;当观测数据受污染时,利用软修剪方法估计的稳健均值、协方差代替传统估计,构建稳健充分降维算法.数值实验显示:在连接函数关于自变量均值对称时,一阶算法SIR的降维效果较差,但它对自变量分布、切片数较稳健;相比SIR,二阶算法SAVE、CP-SAVE的要求更苛刻,对切片数、自变量分布都敏感,但可找到SIR探索不到的方向;当自变量为厚尾分布时,CP-SAVE通常优于SAVE;SIR与SAVE混合算法对自变量分布、连接函数的适应性更好,在多种场合下可改进降维效果;软修剪稳健估计对截断参数稳健,建议截断参数略大于异常点比例;相对稳健SAVE,稳健SIR只需要在切片内估计稳健均值,适应条件宽松,更符合实际,推荐优先使用.