李建湘;汤四平
设$1\leq a<b, 0\leq k$是整数. 设$G$是一个含有$k$-因子$Q$且阶为$|G|$的图. 设\delta(G)$表示$G$的最小度, 且$\delta(G)\geq a+k$. 如果$Q$连通, 设$\varepsilon=k$, 否则设$\varepsilon=k+1$.证明:当$b\geq a+\varepsilon-1$时, 如果对$G$的任意两个
不相邻的点$x$和$y$都有max$\{d_G(x),d_G(y)\}\geq {\rm max}\{{{a|G|} \over {a+b}},{{(|G|+(a-1)(2a+b+\varepsilon-2))} \over {b+1}}\}+k$, 那么$G$有一个$[a, b]$-因子$F$ 使得 $E(F)\cap E(Q)=\emptyset$. 这个度条件是最佳的, 条件$b\geq
a+\varepsilon-1$不能去掉. 进一步,得到图存在含给定$k$-因子的$[a, b]$-因子的度条件.