杨迎球;苏建基
最近Ando等证明了在一个$k$($k\geq 5$ 是一个整数) 连通图 $G$ 中,如果 $\delta(G)\geq k+1$, 并且 $G$ 中既不含 $K^{-}_{5}$,也不含 $5K_{1}+P_{3}$, 则$G$ 中含有一条 $k$ 可收缩边.对此进行了推广,证明了在一个$k$连通图$G$中,如果 $\delta(G)\geq k+1$,并且 $G$ 中既不含$K_{2}+(\lfloor\frac{k-1}{2}\rfloor K_{1}\cup P_{3})$,也不含 $tK_{1}+P_{3}$ ($k,t$都是整数,且$t\geq 3$),则当 $k\geq 4t-7$ 时, $G$ 中含有一条 $k$ 可收缩边.