孙经先
若 A\cup B≠D(c),则存在(c,v_0)∈D(c),使\bar{\lambda}(v_0)a.故存在 n_0,使当 n≥n_0时\bar{\lambda}(v_0)<β_n,\underline{\lambda}(v_0)>α_n。利用常规证法(参见[1]中p.122)可知,必存在R~1×X 中的有界开集 U,满足 E(V_0)\subset U,\partial D=\phi,\bar{U}(α_n_0,β_n_0)×X。由 D 的定义知,存在{n}的子列{n_k}及 Z_n_k∈\mathcal{C}_n_k,使使 Z_n_k→(c,v_0)。不失一般可设诸 Z_n_k 均属于 U。由(2)式及\mathcal{C}_{nk}的连通性,并注意到\bar{U}(α_n_0,β_n_0)×X,可知当 n_k≥n_0时有\mathcal{C}_{nk}\cap \partial U\not=\phi,取 y_n_k∈\mathcal{C}_{nk}\cap \partial U,则{y_n_k|k=1,2,…}是列紧的。故存在{y_n_k}的子列{y~n_k_i}及 y~*∈\partial U,使 y~n_k_i→y~*。显然y~*∈D,故 y~*∈\partial D \cap D,此与\partial U\cap D=\phi矛盾。所以(5)式成立。