鲁国清
考虑两条回归线E(z|X=x)=α_i+β′_ix,i=1,2,其中 α_i,β_i=(β_(i1),……,β_(ik))′是回归系数,x=(x_1,…,x_k)′是自变量.通常要检验这两条回归线的重合性,即是检验假设 H_0∶α_1+β′_1x=α_2+β′_2x,对于一切 x;H_1∶α_1+β′_1x\not= α_2+β′_2x,对至少一个 x 成立.这是统计中的一个典型问题.在许多试验中往往要考虑更为特殊的对立假设.经典的例子如在假定 β_1=β_2下,检验 α_1 与 α_2的差异是否显著;或在假定α_1=α_2下,检验 β_1与 β_2的差异是否显著.后者称为平行性检验.Zellner,Smith 和 Choi 对这类问题作了一些工作.