张维弢
设 λ∈[λ_0,∞)(0<λ_0<<1),H_1=H_0~2(Ω)∩H~3(Ω),H_2=H_0~1(Ω)∩H~3(Ω),H_3=H~3(Ω),k_1=1/4,k_2=1/12,k_3=1/36,J_6(λ)=integral d(x,Γ)≥a~λlog(1+a~(-β) |△▽(u_e-u)|~2dx,α(ε)=1/6×log_ε1/C(C>1).我们考虑问题(?)定理.若 u=f∈H_i,对问题(1),有如下三种情形成立:i)正规区域 当 λ_0≤λ≤1/6-α(ε)时,有J_6(λ)≤C‖f‖_(H~3(Ω))~2;ii)奇性增长区域当1/6-α(ε)<λ<1/6+k_i/6时,有J_6(λ)≤Cε~(-6λ+2k_i)‖f‖_(H~3(Ω))~2;iii)奇性稳定区域当 λ≥1/6+(k_i)/6时,有J_6(λ)≤Cε~(-1+k_i)‖f‖_(H~3(Ω))~2;其中 i=1,2,3,β≥(45)/(32),C 为同 ε 无关的常数(见图1).