吴启光
考虑模型Y=(y_1,…,y_n)′=(β,…,β)′+(ε_1,…,ε_n)′=1β+ε.(1.1)此处1=(1,…,1)′;ε_1,…,ε_n 相互独立,E(ε_i)=0,E(ε_i~2)=σ~2,E(ε_i~3)=0,E(ε_i~4)=3σ~4,i=1,…,n;-∞<β<∞,0<σ<∞.鉴于 β 的最重要的估计量是观察值 Y 的线性函数,σ~2和 β~2+σ~2的最重要的估计量是 Y 的非负定二次型,在考虑 β 的估计时,首先把注意力集中在 Y 的线性函数上;在考虑σ~2或 β~2+σ~2的估计时,首先考虑 Y 的非负定二次型.参考文献[1]在一般线性模型和二次损失下,给出了回归系数的可估线性函数的估计在线性估计类中是可容许的充要条件.参考文献[2]和[3]在模型(1.1)和平方损失下给出了 σ~2的估计在非负定二次型估计类中是可容许的充要条件;而在一般线性模型和平方损失下,给出了 σ~2的估计在非负定二次型估计类中是可容许的必要条件和充分条件,给出了相当大的一类可容许估计;此外,给
...