成平
令 X_1,…,X_n 是一串独立随机变量,且 X_1~P_(θ_i)θ_i∈(?)_i,(i=1,2,…,n),假设估计θ_i 的损失函数为 L(θ_i,d_i),δ_i(X_i)是仅依赖 X_i,θ_i 的一个容许估计(i=1,2,…,n).现在我们要同时估计(θ_1,…,θ_n)′(?)θ,其损失函数取为 sum from i=1 to n L(θ_i,d_i),那么(δ_i(X_1),…,δ_n(X_n))′是θ的容许估计吗?早在50年代,Stein 就证明了,在 n≥3,X_i~N(θ_i,1),L(θ_i,d_i)=(θ_i-d_i)~2条件下,上述结论不成立.近20余年,很多作者也研究了这个问题,指出 Stein 的现象对许多分布,例如 Poisson 分布,Gama 分布,负二项分布及位置参数估计皆存在.但在什么条件下,(δ,(X_1),…,δ_n(X))′是容许的则很少研究,仅仅有少数特殊情况下的结果(见[3]).本文给出了相当一般的充分条件(定理1.1),利用定理1.1,研究了 L(θ_i,d_i)=λ(θ_i)(g(θ_i)-d_i)~2时,结论成立的充分条件(定理2.1).还给出了多个位置参数,Pitman 估计为容许的充分条件.最后一节给出了五个具体例子,它包括在平方损失下,多个正态密度及分布函数的容许估计;参数自然区间 为有限区间之指数族分布,在平方损失下,同时估计多个均值的线性容许估计;若 X_i~Poisson 分布 P_(2_i),i=1,2,…,n(a_1x_1,…,a_nx_n)′在损失函数sum from i=1 to n (λ_i-d_i)~2,及 sum from i=1 to n(λ_i-d_i)~2/λ_i下,它是容许估计的充要条件.几个离散指数族,在平方损失下,几个均值同时估计容许性的讨论.最后一个例子探讨了 X_i~二项分布 B(m,P_i) 在任意加权平方损失,sum from i=1 to n h(P_i)(P_i-d_i)~2下,((X_1+m~(1/2)/2)/m+m~(1/2),…,(X_n+m~(1/2)/2)/m+m~(1/2))皆是容许的问题.在§1我们还证明了,位置刻度参数分布族估计多个位置参数下,最优同变估计的容许问题,说明不存在 Stein 的现象(定理1.2).