Finite-Time Preview Control for Uncertain Systems with Input Saturation

LI Li, MENG Xiaohua, YE Hui

Journal of Systems Science and Mathematical Sciences ›› 2023, Vol. 43 ›› Issue (7) : 1677-1693.

PDF(522 KB)
PDF(522 KB)
Journal of Systems Science and Mathematical Sciences ›› 2023, Vol. 43 ›› Issue (7) : 1677-1693. DOI: 10.12341/jssms22845

Finite-Time Preview Control for Uncertain Systems with Input Saturation

  • LI Li1,2, MENG Xiaohua1,2, YE Hui1,2
Author information +
History +

Abstract

In this paper, the finite-time preview control problem for a class of uncertain saturated systems is studied. In order to avoid the difference between the time-varying coefficient matrix and the saturated nonlinear term, this paper utilizes the difference between the system state variables and the corresponding auxiliary variables, instead of the usual difference between system states, and constructs a new form of "augmented error system", which converts the finite-time preview saturated control problem into the finite-time stabilization problem of the augmented error system. The augmented error system no longer contains error vector, which not only reduces the order of the system, but also allows the output matrix to contain uncertainties. For the augmented error system, the feedback control is introduced, and the sufficient conditions for the finite-time stability of the closed-loop system and the design method of the predictive saturated controller are derived by using the improved sector condition and LMI (Linear Matrix Inequality). The numerical simulation examples also illustrate the effectiveness of the results in the paper.

Key words

Augmented error system / preview saturated control / finite-time control / uncertain system / input saturation / linear matrix inequality

Cite this article

Download Citations
LI Li , MENG Xiaohua , YE Hui. Finite-Time Preview Control for Uncertain Systems with Input Saturation. Journal of System Science and Mathematical Science Chinese Series, 2023, 43(7): 1677-1693 https://doi.org/10.12341/jssms22845

References

[1] Wang Q, Zhang Z Q, Zhang K, et al. Time-varying controller design for input saturated systems. Journal of the Franklin Institute, 2020, 357:10453-10471.
[2] Chen D X, Lu T, Liu X L, et al. Finite-time consensus of multiagent systems with input saturation and disturbance. International Journal of Robust and Nonlinear Control, 2021, 31(6):2097-2109.
[3] 黄燕华, 代冀阳, 应进, 等. 带有输入饱和及输出受限非仿射系统固定时间跟踪控制. 控制与决策, 2023, 38(2):429-434. (Huang Y H, Dai J Y, Ying J, et al. Fixed-time tracking control of pure-feedback system with input saturation and output constraints. Control and Decision, 2023, 38(2):429-434.)
[4] 蔡旭, 楼旭阳, 崔宝同. 输入饱和下非线性系统的事件触发控制器设计. 控制理论与应用, 2022, 39(4):613-622. (Cai X, Lou X Y, Cui B T. Event-triggered controller design for nonlinear systems with input saturation. Control Theory & Applications, 2022, 39(4):613-622.)
[5] 张春雷, 王立东, 高闯,等. 输入饱和及输出受阻的纯反馈非线性系统控制. 控制工程, 2021, 28(3):531-539. (Zhang C L, Wang L D, Gao C, et al. Pure feedback nonlinear system control with input saturation and output constraints. Control Engineering of China, 2021, 28(3):531-539.)
[6] 李俊方, 李铁山. 考虑输入饱和的直接自适应神经网络跟踪控制. 应用科学学报, 2013, 31(3):294-302. (Li J F, Li T S. Direct adaptive neural network tracking control with input saturation. Journal of Applied Sciences-Eletronics and Information Engineering, 2013, 31(3):294-302.)
[7] Birla N, Swarup A. Optimal preview control:A review. Optimal Control Applications and Methods, 2015, 36(2):241-268.
[8] 土谷武士, 江上正. 最新自动控制技术——数字预见控制. 廖福成译. 北京:北京科技大学版社, 1994. (Tsuchiya T, Egami T. Digital Preview and Predictive Control (translated by Liao F C). Beijing:Beijing Science and Technology Press, 1994.)
[9] Sun M Y, Liao F C, Deng J M. Design of an optimal preview controller for linear discretetime periodic systems. Transactions of the Institute of Measurement & Control, 2021, 43(12):2637-2646.
[10] Katayama T, Ohki T, Inoue T, et al. Design of an optimal controller for a discrete-time system subject to previewable demand. International Journal of Control, 1985, 41(3):677-699.
[11] Lu Y R, Liao F C, Deng J M, et al. Cooperative optimal preview tracking for linear descriptor multi-agent systems. Journal of the Franklin Institute, 2019, 356(2):908-934.
[12] Wu J, Liao F C, Tomizuka M. Optimal preview control for a linear continuous-time stochastic control system in finite-time horizon. International Journal of Systems Science, 2016, 1-9.
[13] Liao F C, Ren Z Q, Tomizuka M, et al. Preview control for impulse-free continuous-time descriptor systems. International Journal of Control, 2015, 88(6):1142-1149.
[14] Kojima A, Ishijima S. H∞ performance of preview control systems. Automatica, 2003, 39(4):693-701.
[15] Kojima A, Ishijima S. Formulas on preview and delayed control. IEEE Transactions on Automatic Control, 2007, 51(12):1920-1937.
[16] Moelja A A, Meinsma G. H2 control of preview systems. Automatica, 2006, 42(6):945-952.
[17] Li L, Liao F C. Parameter-dependent preview control with robust tracking performance. IET Control Theory & Applications, 2017, 11(1):38-46.
[18] Li L, Liao F. Robust preview control for a class of uncertain discrete-time systems with timevarying delay. ISA Transactions, 2018, 73:11-21.
[19] Huang C, Huang H L. Observer-based robust preview tracking control for a class of non-linear systems. IET Control Theory & Applications, 2020, 14(7):991-998.
[20] Lan Y H, He J L, Li P, et al. Optimal preview repetitive control with application to permanent magnet synchronous motor drive system. Journal of the Franklin Institute, 2020, 357(15):10194- 10210.
[21] Li L. Observer-based preview repetitive control for uncertain discrete-time systems. International Journal of Robust & Nonlinear Control, 2021, 31(4):1103-1121.
[22] Yim S J. Design of preview controllers for active roll stabilization. Journal of Mechanical Science and Technology, 2018, 32(4):1805-1813.
[23] Yoshimura T. Discrete-time adaptive sliding mode controller for vehicle steering systems with preview. Journal of Vibration and Control, 2013, 19(10):1587-1600.
[24] Li L, Zhang Y F. Distributed preview control for large-scale systems with time-varying delay. ISA Transactions, 2021, 109:22-33.
[25] 李丽, 卢延荣, 于晓. 参数不确定离散时间系统的有限时间输出反馈预见控制器设计. 控制与决策, 2021, 36(9):2074-2084. (Li L, Lu Y R, Yu X. Design of finite-time output feedback preview controller for discrete-time systems with parameter uncertainty. Control and Decision, 2021, 36(9):2074-2084.)
[26] Zhu L, Shen Y J, Li C C. Finite-time control of discrete-time systems with time-varying exogenous disturbance. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):361- 370.
[27] Nguyen A T, Chevrel P, Claveau F. Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations. Automatica, 2018, 89:420-424.
[28] Sun Y, Ding D, Zhang S, et al. Non-fragile L2-L control for discrete-time stochastic nonlinear systems under event-triggered protocols. International Journal of General Systems, 2018, 47(5):446-459.
[29] Chang X H, Zhang L, Park J H. Robust static output feedback H∞ control for uncertain fuzzy systems. Fuzzy Sets & Systems, 2015, 273:87-104.
[30] Tan Y S, Xiong M H, Du D S, et al. Observer-based robust control for fractional-order nonlinear uncertain systems with input saturation and measurement quantization. Nonlinear Analysis:Hybrid Systems, 2019, 34:45-57.
PDF(522 KB)

309

Accesses

0

Citation

Detail

Sections
Recommended

/