Semiparametric Smooth Transition Quantile Autoregreeive Model and Its Application

KANG Ning, MO Luyao, JING Ke

Journal of Systems Science and Mathematical Sciences ›› 2024, Vol. 44 ›› Issue (3) : 844-861.

PDF(789 KB)
PDF(789 KB)
Journal of Systems Science and Mathematical Sciences ›› 2024, Vol. 44 ›› Issue (3) : 844-861. DOI: 10.12341/jssms22446

Semiparametric Smooth Transition Quantile Autoregreeive Model and Its Application

  • KANG Ning1, MO Luyao1, JING Ke2
Author information +
History +

Abstract

Smooth transition autoregressive model (STAR) often sets the transition function as logistic function or exponential function, and obtains the estimation, test and forecasting results by mean regression. We propose a new semi-parametric smooth transition quantile autoregressive model. Its main advantages are as follows: First, the smooth transition function is constructed by the barycentric rational interpolation function, which has more flexible form and can better reduce the risk of mispecification. Second, in the framework of quantile regression, the genetic algorithm is applied to obtain the coefficient estimation of new model, which is more informative than the mean regression. Numerical simulation results show that the autoregressive coefficient estimators have good performance in unbiasedness, effectiveness and consistency. Finally, the new model is applied to reveal and forecast the dynamic trend of stock returns of the Shanghai Composite Index, and the empirical results indicate that there exist nonlinear and heterogeneous characteristics of the return series.

Key words

Barycentric rational interpolation / quantile regression / smooth transition autoregression / genetic algorithm

Cite this article

Download Citations
KANG Ning , MO Luyao , JING Ke. Semiparametric Smooth Transition Quantile Autoregreeive Model and Its Application. Journal of System Science and Mathematical Science Chinese Series, 2024, 44(3): 844-861 https://doi.org/10.12341/jssms22446

References

[1] Tong H. Threshold Models in Non-Linear Time Series Analysis:Lecture Notes in Statistics. Berlin:Springer, 1983.
[2] Hamilton J D. A new approach to the economic analysis of non-stationary time series and the business cycle. Econometrica, 1989, 57(2):357-384.
[3] Chan K S, Tong H. On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 1986, 7(7):179-194.
[4] Teräsvirta T. Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 1994, 89(425):208-218.
[5] Van Dijk D, Teräsvirta T, Franses P H. Smooth transition autoregressive models——A survey of recent developments. Econometric Reviews, 2002, 21(1):1-47.
[6] Umer U M, Sevil T, Sevil G. Forecasting performance of smooth transition autoregressive (STAR) model on travel and leisure stock index. The Journal of Finance and Data Science, 2018, 157(1):1-10.
[7] 贺俊, 丁若麟, 毕功兵. 信贷期限结构对经济增长的影响——基于非线性和异质性的考量. 系统工程理论与实践, 2021, 41(12):3079-3089. (He J, Ding R L, Bi G B. The effect of credit term structure on economic growth:A nonlinear study with heterogeneous considerations. Systems Engineering——Theory & Practice, 2021, 41(12):3079-3089.)
[8] 徐家杰. 双阀值LSTAR模型及其在人民币汇率预测中的应用. 系统科学与数学, 2013, 33(3):264-275. (Xu J J. An LSTAR model with two thresholds and its application to RMB exchange rate forcast. Journal of Systems Science and Mathematical Sciences, 2013, 33(3):264-275.)
[9] 储德银, 迟淑娴. 财政纵向失衡对地方经济增长的非线性影响及其转换特征. 经济研究, 2020, 55(11):50-66. (Chu D Y, Chi S X. Non-linear effects of vertical fiscal imbalances on local economic growth and transformation characteristics. Economic Research Journal, 2020, 55(11):50-66.)
[10] Kilic R. Linearity tests and stationarity. The Econometrics Journal, 2004, 7(1):55-62.
[11] 刘雪燕, 张晓峒. 非线性LSTAR模型中的单位根检验. 南开经济研究, 2004, 1:61-74. (Liu X Y, Zhang X T. Unit root test in the nonlinear LSTAR model. Nankai Economic Studies, 2004, 1:61-74.)
[12] 赵春艳. 平滑转换自回归模型的平稳性问题研究. 数量经济技术经济研究, 2012, 29(1):152-160. (Zhao C Y. Research on the stationarity of smooth transition autoregressive model. The Journal of Quantitative & Technical Economics, 2012, 29(1):152-160.)
[13] Park J Y, Shintani M. Testing for a unit root against traditional autoregressive models. International Economic Review, 2016, 57(2):635-664.
[14] Van Dijk D, Franses P H. Modeling multiple regimes in the business cycle. Macroecnomic Dynamics, 1999, 3(3):311-340.
[15] Mcaleer M, Medeiros M C. A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries. Journal of Econometrics, 2008, 147(1):104-119.
[16] 王成勇. 多机制半参数平滑转换回归模型——兼论我国宏观经济运行周期. 数理统计与管理, 2012, 31(1):96-104. (Wang C Y. Multiple regime semiparametric smooth transition regression model and discussion on business cycle of China. Journal of Applied Statistics and Management, 2012, 31(1):96-104.)
[17] Lundbergh S, Teräsvirta T, Van Dijk D. Time-varying smooth transition autoregressive models. Journal of Business & Economic Statistics, 2003, 21(1):104-121.
[18] 危黎黎, 向书坚. 我国工业增加值季节波动非线性研究——基于SEATV-STAR模型. 中国管理科学, 2016, 24(4):10-18. (Wei L L, Xiang S J. Research on the nonlinearity of seasonal fluctuations of China's industrial added value-based on SEATV-STAR model. Chinese Journal of Management Science, 2016, 24(4):10-18.)
[19] Weise C L. The asymmetric effects of monetary policy:A nonlinear vector auto-regression approach. Journal of Money, Credit and Banking, 1999, 31(1):85-108.
[20] Hubrich K, Tersvirta T. Thresholds and smooth transitions in vector autoregressive models. CREATES Research Papers, 2013, 32:273-326.
[21] 陈创练, 单敬群, 林玉婷. 中国金融风险周期监测与央行货币政策非对称性效果识别. 统计研究, 2020, 37(6):79-92. (Chen C L, Shan J Q, Lin Y T. Monitoring on China's financial risk cycle and the identification of asymmetric effects of the central bank's monetary policy. Statistical Research, 2020, 37(6):79-92.)
[22] 蔡楠, 方颖. 半参数STAR模型的估计及应用. 系统工程理论与实践, 2014, 34(2):273-281. (Cai N, Fang Y. Estimation of semi-parametric STAR model and its application. Systems Engineering——Theory & Practice, 2014, 34(2):273-281.)
[23] 李娜, 郑少智. 平滑转移自回归模型及其应用. 统计与决策, 2018, 34(10):24-28. (Li N, Zheng S Z. Smooth transition autoregression model and its application. Statistics & Decision, 2018, 34(10):24-28.)
[24] Čížek P, Koo C H. Semiparametric transition models. Econometric Reviews, 2022, 41(4):400-415.
[25] Koenker R, Xiao Z. Quantile autoregression. Journal of the American Statistical Association, 2006, 101(475):980-990.
[26] 叶五一, 马荣贵, 吴遵. 基于平滑转换机制分位点回归模型的动态相关性. 中国科学技术大学学报, 2019, 49(8):668-679. (Ye W Y, Ma R G, Wu Z. Dynamic correlation of quantile regression model based on smooth transition mechanism. Journal of University of Science and Technology of China, 2019, 49(8):668-679.)
[27] Floater M S, Hormann K. Barycentric rational interpolation with no poles and high rates of approximation. Numerische Mathematik, 2007, 107(2):315-331.
[28] Berrut J P, Floater M S, Klein G. Convergence rates of derivatives of a family of barycentric rational interpolants. Applied Numerical Mathematics, 2011, 61(9):989-1000.
[29] Baker R D, Jackson D. Statistical application of barycentric rational interpolants:An alternative to splines. Computational Statistics, 2014, 29(5):1065-1081.
[30] Hofreither C. An algorithm for best rational approximation based on barycentric rational interpolation. Numerical Algorithms, 2021, 88(1):365-388.
PDF(789 KB)

311

Accesses

0

Citation

Detail

Sections
Recommended

/