Preview Saturated Control for Uncertain Periodic Discrete-Time Systems

LI Li, LU Yanrong, SONG Shenyi

Journal of Systems Science and Mathematical Sciences ›› 2024, Vol. 44 ›› Issue (1) : 99-114.

PDF(489 KB)
PDF(489 KB)
Journal of Systems Science and Mathematical Sciences ›› 2024, Vol. 44 ›› Issue (1) : 99-114. DOI: 10.12341/jssms22362

Preview Saturated Control for Uncertain Periodic Discrete-Time Systems

  • LI Li1,2, LU Yanrong3, SONG Shenyi1
Author information +
History +

Abstract

This paper considers the problem of preview saturated control for uncertain periodic discrete-time systems with actuator saturation. The classical difference operator method in preview control theory can not be applied due to the existence of time-varying uncertain matrix and input saturation. The state auxiliary variable is introduced and the usual state difference is replaced by the the difference between the state vector and the state auxiliary variable. Therefore, the augmented error system of uncertain discrete system with input saturation is successfully constructed. By constructing the augmented model, the problem of designing the preview saturation controller of the original system is transformed into the problem of stabilization of the augmented error system. A sufficient condition for the asymptotic stability of the closed-loop system is derived by using the improved sector condition to deal with the saturation nonlinearity and the LMI technique. Finally, a simulation example is given to illustrate the validity of the results.

Key words

Augmented error system / preview control / uncertain periodic system / input saturation / state feedback / static output feedback

Cite this article

Download Citations
LI Li , LU Yanrong , SONG Shenyi. Preview Saturated Control for Uncertain Periodic Discrete-Time Systems. Journal of System Science and Mathematical Science Chinese Series, 2024, 44(1): 99-114 https://doi.org/10.12341/jssms22362

References

[1] Birla N, Swarup A. Optimal preview control:A review. Optimal Control Applications and Methods, 2015, 36(2):241-268.
[2] 张桂香, 周腊吾. 机电系统控制的新方法-预见控制. 机电一体化, 1999, (2):55-56. (Zhang G X, Zhou L W. A new method of electromechanic system control-preview control. Mechatronics, 1999, (2):55-56.)
[3] 李丽, 张耀峰, 于晓. 参数不确定广义离散时系统的预见重复控制. 系统科学与数学, 2021, 41(7):1788-1806. (Li L, Zhang Y F, Yu X. Preview repetitive control for discrete-time descriptor polytopic systems. Journal of Systems Science and Mathematical Sciences, 2021, 41(7):1788-1806.)
[4] Ryu S, Kim Y, Park Y. Robust H preview control of an active suspension system with norm-bounded uncertainties. International Journal of Automotive Technology, 2008, 9(5):585-592.
[5] Wang D, Liao F. Robust preview control for uncertain discrete-time systems. Numerical Analysis and Applied Mathematics ICNAAM 2012 AIP Conference Proceeding, 2012, 1479(1):2028-2031.
[6] 郭玉建, 廖福成. 多采样率不确定离散时滞系统的鲁棒预见控制. 控制与决策, 2017, 32(12):2113-2126. (Guo Y J, Liao F C. Robust preview control for multirate uncertain discrete-time systems with input delay. Control and Decision, 2017, 32(12):2113-2126.)
[7] Bittanti S. Deterministic and Stochastic Linear Periodic Systems. Berlin:Springer, 1986.
[8] 孙凯, 谢广明. 一类不确定线性周期离散时间系统的分析与控制. 应用数学和力学, 2009, 30(4):443-456. (Sun K, Xie G M. Analysis and control of a class of uncertain linear periodic discrete-time systems. Applied Mathematics and Mechanics, 2009, 30(4):443-456.)
[9] Souza C, Coutinho D. Robust stability and control of uncertain linear discrete-time periodic systems with time-delay. Automatica, 2014, 50(2):431-441.
[10] Dong Y, Hao J, Yao Y, et al. Robust stabilization of discrete-time switched periodic systems with time delays. Complexity, 2019, 2019:1-13.
[11] Pang B, Jiang Z P. Adaptive optimal control of linear periodic systems:An off-policy value iteration approach. IEEE Transactions on Automatic Control, 2021, 66(2):888-894.
[12] 李丽, 廖永龙, 孟晓华. 周期离散时间系统的L2-L 预见控制. 系统科学与数学, 2022, 42(5):1113-1128. (Li L, Liao Y L, Meng X H. L2-L preview control for discrete-time periodic systems. Journal of Systems Science and Mathematical Sciences, 2022, 42(5):1113-1128.)
[13] 杨娜娜, 黎锁平, 周永强. 死区输入多智能体系统的分布式迭代学习控制. 系统科学与数学, 2022, 42(12):3149-3162. (Yang N N, Li S P, Zhou Y Q. Distributed iterative learning control for multi-agent systems with dead zone input. Journal of Systems Science and Mathematical Sciences, 2022, 42(12):3149-3162.
[14] Chen D X, Lu T, Liu X L, et al. Finite-time consensus of multi-agent systems with input saturation and disturbance. International Journal of Robust and Nonlinear Control, 2021, 31(6):2097-2109.
[15] 陈子聪, 王林, 刘建圻, 等. 带输入饱和的不确定非线性系统自适应模糊触发式补偿控制. 控制与决策, 2021, 36(12):3007-3014. (Chen Z C, Wang L, Liu J Q, et al. Adaptive fuzzy trigger compensation control for uncertain nonlinear system with input saturation. Control and Decision, 2021, 36(12):3007-3014.)
[16] 蔡旭, 楼旭阳, 崔宝同. 输入饱和下非线性系统的事件触发控制器设计. 控制理论与应用, 2022, 39(4):613-622. (Cai X, Lou X Y, Cui B T. Event-triggered controller design for nonlinear systems with input saturation. Control Theory & Applications, 2022, 39(4):613-622.)
[17] Nguyen A T, Chevrel, P, Clavenu F. Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations. Automatica, 2018, 89:420-424.
[18] Ma Y C, Jia X R, Liu D Y. Robust finite-time H control for discrete-time singular Markovian jump systems with time-varying delay and actuator saturation. Applied Mathematics and Computation, 2016, 286(2):213-227.
[19] Ma Y C, Yang P J, Zhang Q L. Robust H control for uncertain singular discrete T-S fuzzy time-delay systems with actuator saturation. Journal of the Franklin Institute, 2016, 353(13):3290-3311.
[20] Chang X, Zhang L, Park H P. Robust static output feedback H control for uncertain fuzzy systems. Fuzzy Sets Systems, 2015, 273:87-104.
[21] Tan Y S, Xiong M H, Du D S, et al. Observer-based robust control for fractional-order nonlinear uncertain systems with input saturation and measurement quantization. Nonlinear Analysis:Hybrid Systems, 2019, 34:45-57.
PDF(489 KB)

206

Accesses

0

Citation

Detail

Sections
Recommended

/