Over-Algebras of Upper Triangular Matrix Algebras and theirJordan Derivations over Commutative Rings

ZHAO Yanxia YAORuiping WANG Dengyin

Journal of Systems Science and Mathematical Sciences ›› 2008, Vol. 28 ›› Issue (12) : 1502-1508.

PDF(256 KB)
PDF(256 KB)
Journal of Systems Science and Mathematical Sciences ›› 2008, Vol. 28 ›› Issue (12) : 1502-1508. DOI: 10.12341/jssms10131
论文

Over-Algebras of Upper Triangular Matrix Algebras and theirJordan Derivations over Commutative Rings

  • ZHAO Yanxia YAO
    Ruiping WANG Dengyin
Author information +
History +

Abstract

Let R be an arbitrary commutative ring with identity,
and 2 be invertible in R. Let M(n,R) (resp., T(n,R)) be the R-algebra consisting of all
n×n matrices (resp., upper triangular matrices) over R.
In this paper, we first determine all
the over-algebras of T(n,R) in M(n,R), then for any given
over-algebra of T(n,R) in M(n,R), we give the explicit
description on its Jordan derivations.

Key words

Commutative rings / over-algebras / Jordan derivations.

Cite this article

Download Citations
ZHAO Yanxia YAORuiping WANG Dengyin. Over-Algebras of Upper Triangular Matrix Algebras and theirJordan Derivations over Commutative Rings. Journal of Systems Science and Mathematical Sciences, 2008, 28(12): 1502-1508 https://doi.org/10.12341/jssms10131
PDF(256 KB)

212

Accesses

0

Citation

Detail

Sections
Recommended

/