CONVERGENCE PROPERTIES OF OPTIMAL CONTROL ON A PERTURBED DOMAIN

FENG DE-XING;ZHANG BING-YU

Journal of Systems Science and Mathematical Sciences ›› 1987, Vol. 7 ›› Issue (1) : 55-062.

PDF(284 KB)
PDF(284 KB)
Journal of Systems Science and Mathematical Sciences ›› 1987, Vol. 7 ›› Issue (1) : 55-062. DOI: 10.12341/jssms08806
论文

CONVERGENCE PROPERTIES OF OPTIMAL CONTROL ON A PERTURBED DOMAIN

  • FENG DE-XING(1);ZHANG BING-YU(2)
Author information +
History +

Abstract

This paper discusses the convergence properties of optimal control of a system describedby an elliptic partial differential equation on a perturbed domain.Assume that the perturbed domain \Omega_ε can be characterized by a small parameter ε.Then the optimal control,v_ε~*,and the corresponding optimal solution,u_ε~*,depend on the perturbed parameter ε.Itis shown that u_ε~* and v_ε~* converge to u_0~* and v_0~* respectively as ε goes to 0,where v_0~* andu_0~* are the optimal control and the optimal solution of the system on the unperturbeddomain \Omega_0.

Key words

Cite this article

Download Citations
FENG DE-XING , ZHANG BING-YU. CONVERGENCE PROPERTIES OF OPTIMAL CONTROL ON A PERTURBED DOMAIN. Journal of Systems Science and Mathematical Sciences, 1987, 7(1): 55-062 https://doi.org/10.12341/jssms08806
PDF(284 KB)

186

Accesses

0

Citation

Detail

Sections
Recommended

/