研讨一类基于年龄等级结构和空间扩散行为的种群系统模型的最优控制问题, 其状态系统由二阶非线性偏微分积分方程描述, 控制变量为种群初始分布, 指标泛函表征任意固定时间段后的种群资源净收益. 运用法锥理论并构造恰当的共轭系统方程建立了最大值原理, 扩充指标泛函且应用Ekeland变分原理及不动点方法证明了最优解的存在唯一性. 数值实验显示了所得理论成果的可应用性.
Abstract
This paper is concerned with an optimal control problem, in which the state system is described by a nonlinear second-order partial integro-differential equation, the control function stands for initial population distribution, and the index gives the net benefits from the population resources after an arbitrarily fixed time. Based on some conditions on model parameters, we establish the necessary optimality conditions (i.e., maximum principle), which provide the structure of optimal strategies and are given by a truncating function of the adjoint variable. Furthermore, we show that there is one and only one optimal control policy by the means of Ekeland's variational principle and fixed points reasoning of contraction mappings. Numerical experiments display the applicability of the obtained theoretical results.
关键词
随机游动 /
等级差异 /
初始分布 /
最优控制 /
法锥 /
变分原理
{{custom_keyword}} /
Key words
Random walks /
hierarchy of ages /
initial distributions /
optimal controls /
normal cones /
variational principle
{{custom_keyword}} /
中图分类号:
92B05
49K20
49J20
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Turing A M. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London B, 1952, 237:37-72.
[2] Okubo A, Levin S A. Diffusion and Ecological Problems. 2nd Edition. New York:Springer-Verlag, 2001.
[3] Dewsbury D A. Dominance rank, copulatory behavior, and differential reproduction. The Quarterly Review of Biology, 1982, 57(2):135-159.
[4] Lomnicki A. Population Ecology of Individuals. Princeton:Princeton University Press, 1988.
[5] Kraev E A. Existence and uniqueness for height structured hierarchical population model. Natural Resource Modeling, 2001, 14(1):45-70.
[6] Ackleh A S, Deng K, Hu S. A quasilinear hierarchical size-structured model:Well-posedness and approximation. Applied Mathematics and Optimization, 2005, 51(1):35-59.
[7] Calsina A, Saldana J. Basic theory for a class of models of hierarchically structured population dynamics with distributed states in the recruitment. Mathematical Models and Methods in Applied Sciences, 2006, 16(10):1695-1722.
[8] Shen J, Shu C W, Zhang M. A high order WENO scheme for a hierarchical size-structured population model. Journal of Scientific Computing, 2007, 33(3):279-291.
[9] Cushing J M. The dynamics of hierarchical age-structured populations. J. Math. Biol., 1994, 32(7):705-729.
[10] Henson S M, Cushing J M. Hierarchical models of intra-specific competition:Scramble versus contest. J. Math. Biol., 1996, 34(7):755-772.
[11] Jang S R J, Cushing J M. A discrete hierarchical model of intra-specific competition. J. Math. Anal. Appl., 2003, 280:102-122.
[12] Farkas J Z, Hagen T. Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback. Communications on Pure and Applied Analysis, 2009, 8(6):1825-1839.
[13] Liu Y, He Z R. On the well-posedness of a nonlinear hierarchical size-structured population model. ANZIAM Journal, 2017, 58:482-490.
[14] He Z R, Ni D, Wang S. Existence and stability of steady states for hierarchical age-structured population models. Electronic Journal of Differential Equations, 2019, 2019(124):1-14.
[15] 何泽荣,倪冬冬,王做平.一类等级结种种詳系统的调控向題.系统科学与数学, 2018, 38(10):1140-1148.(He Z R, Ni D D, Wang S P. Control problem for a class of hierarchical population system. Journal of Systems Science and Mathematical Sciences, 2018, 38(10):1140-1148.)
[16] 何泽荣,除杯,谢强军.带有离散个体等级结构的种無系统的控制问题.系统科学与数学, 2020, 40(3):410-422.(He Z R, Chen H, Xie Q J. Control problems of a discrete hierarchical population system. Journal of Systems Science and Mathematical Sciences, 2020, 40(3):410-422.)
[17] He Z R, Ni D, Wang S P. Optimal harvesting of a hierarchical age-structured population system. International Journal of Biomathematics, 2019, 12(8), DOI:10.1142/S1793524519500918.
[18] 何泽荣,突艺萠,韩梦杰.具有尺度等紴和时滞的种锌系统的最优边界控制.数学物理学报, 2022, 42A (3):867-880.(He Z R, Dou Y M, Han M J. Optimal boundary control for a hierarchical size-structured population model with delay. Acta Mathematica Scientia, 2022, 42A (3):867-880.)
[19] 吴泽栋,雒志学,祁慧敏.一类年龄等级结构种群模型的分析与控制.系统科学与数学,2023,43(8):1934-1951.(Wu Z D, Luo Z X, Qi H M. Analysis and control of a hierarchical age-structured population model. Journal of Systems Science and Mathematical Sciences, 2023, 43(8):1934-1951.)
[20] 何泽荣,秦婉玉.融合空间扩散与年龄等级结构的种群模型分析.系统科学与数学, 2021, 41(10):26872697.(He Z R, Qin W Y. Analysis of a population model incorporating spatial dispersal into hierarchical age-structure. Journal of Systems Science and Mathematical Sciences, 2021, 41(10):2687-2697.)
[21] 何泽荣,秦婉玉.融合空间扩散与等级结构的种群系统的最优收获控制.系统科学与数学, 2022, 42(2):240-254.(He Z R, Qin W Y. Optimal harvesting control of hierarchical population systems with diffusion. Journal of Systems Science and Mathematical Sciences, 2022, 42(2):240-254.)
[22] Barbu V, Iannelli M. Optimal control of population dynamics. Journal of Optimization Theory and Applications, 1999, 102:1-14.
[23] Aniţa S. Analysis and Control of Age-Dependent Population Dynamics. Dordrecht:Kluwer Academic Publishers, 2000.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(11871185)资助课题.
{{custom_fund}}