神经理想的Gröbner基与典范形式集

郑丽翠, 张艺耀, 刘金旺

系统科学与数学 ›› 2024, Vol. 44 ›› Issue (5) : 1303-1310.

PDF(399 KB)
PDF(399 KB)
系统科学与数学 ›› 2024, Vol. 44 ›› Issue (5) : 1303-1310. DOI: 10.12341/jssms23580CM

神经理想的Gröbner基与典范形式集

    郑丽翠, 张艺耀, 刘金旺
作者信息 +

The Gröbner Bases and Canonical Form of Neural Ideal

    ZHENG Licui, ZHANG Yiyao, LIU Jinwang
Author information +
文章历史 +

摘要

神经环和神经理想这一概念是由Curto等(2013)提出的,它们是用于整理和分析神经编码中复杂组合信息的一种有用的代数方法.文章主要研究了神经理想的典范形式集与Gröbner基之间的关系, 并根据Gröbner 基中的元素给出了3种新类型的RF-关系.

Abstract

As presented by Curto, et al. (2013), neural rings and ideals serve as powerful algebraic constructs that facilitate the systematic organization and analysis of combinatorial data within neural codes. In this paper, we present the relationship between the Gröbner basis and canonical form of the neural ideal. Some new RF-relationships are given by analyzing the forms of elements in neural ideals.

关键词

神经理想 / Gröbner基 / 典范形式集

Key words

Neural ideal / Gröbner basis / canonical form

引用本文

导出引用
郑丽翠 , 张艺耀 , 刘金旺. 神经理想的Gröbner基与典范形式集. 系统科学与数学, 2024, 44(5): 1303-1310. https://doi.org/10.12341/jssms23580CM
ZHENG Licui , ZHANG Yiyao , LIU Jinwang. The Gröbner Bases and Canonical Form of Neural Ideal. Journal of Systems Science and Mathematical Sciences, 2024, 44(5): 1303-1310 https://doi.org/10.12341/jssms23580CM
中图分类号: 68Q40   

参考文献

[1] Curto C, Itskov V, Veliz-Cuba A, et al. The neural ring:An algebraic tool for analyzing the intrinsic structure of neural codes. Bull. Math. Biol., 2013, 75(9):1571-1611.
[2] Curto C, Youngs N. Neural ring homomorphisms and maps between neural codes. Topological Data Analysis:The Abel Symposium 2018, 2020, 15:163-180.
[3] Petersen E, Youngs N, Kruse R, et al. Neural ideals in SageMath. ICMS2018, 2016, DOI:10.1007/978-3-319-96418-8_22.
[4] Geller H, Rebecca G. Canonical forms of neural ideals.2023AWM Research Symposium, 2022, https://arxiv.org/abs/2209.09948v1.
[5] Franke M K, Muthiah S. Every binary code can be realized by convex sets. Advances in Applied Mathematics, 2017, 99:83-93.
[6] Perez A R, Matusevich L F, Shiu A. Neural codes and the factor complex. Advances in Applied Mathematics, 2020, 114:101977.
[7] Jeffs R, Omar M, Youngs N. Neural ideal preserving homomorphisms. Journal of Pure Applied Algebra, 2018, 222(11):3470-3482.
[8] Christensen K, Kulosman H. Some remarks about trunks and morphisms of neural codes. Mathematics for Applications, 2020, 9:3-16.
[9] Garcia R, David L, Puente G, et al. Gröbner bases of neural ideals. International Journal of Algebra and Computation, 2018, 28(4):553-571.
[10] Jamshidi S, Kang E, Petrovic S. Predicting the cardinality of a reduced Gröbner basis. 2023, arXiv:2302.05364.
[11] Christensen K, Kulosman H. Some remarks about trunks and morphisms of neural codes. Mathematics for Applications, 2020, 9:3-16.
[12] Chen A, Frick F, Shiu A. Neural codes, decidability and a new local obstruction to convexity. SIAM Journal on Applied Algebra and Geometry, 2019, 3(1):44-66.
[13] Buchberger B. gro Bases:An Algorithmic Method in Polynomial Ideal Theory. Dodrecht Boston Lancaster:Reidel Publishing Company, 1985.
[14] Eisenbud D. Commutative Algebra with a View Toward Algebraic Geometry. Berlin:Springer, 2004.
[15] Kunz E. Introduction to Commutative Algebra and Algebraic Geometry. Switzerland:Birkha-user, 1991.
[16] Zheng L, Li D, Liu J. An improvement for GVW. Journal of Systems Science&Complexity, 2022, 35(1):427-436.
[17] Kreuzer M, Robbiano L. Computational Commutative Algebra. Berlin:Springer Verlag, 2008.
[18] David A, Little J, Shea D. An Introduction to Computational Algebraic Geometry and% Commutative Algebra. Secaucus:Inc. Secaucus, 2007.

基金

国家自然科学基金项目(12201204, 11971161, 12271154), 湖南省自然科学基金(2023JJ40275, 2022JJ30234)资助课题.
PDF(399 KB)

199

Accesses

0

Citation

Detail

段落导航
相关文章

/