神经环和神经理想这一概念是由Curto等(2013)提出的,它们是用于整理和分析神经编码中复杂组合信息的一种有用的代数方法.文章主要研究了神经理想的典范形式集与Gröbner基之间的关系, 并根据Gröbner 基中的元素给出了3种新类型的RF-关系.
Abstract
As presented by Curto, et al. (2013), neural rings and ideals serve as powerful algebraic constructs that facilitate the systematic organization and analysis of combinatorial data within neural codes. In this paper, we present the relationship between the Gröbner basis and canonical form of the neural ideal. Some new RF-relationships are given by analyzing the forms of elements in neural ideals.
关键词
神经理想 /
Gröbner基 /
典范形式集
{{custom_keyword}} /
Key words
Neural ideal /
Gröbner basis /
canonical form
{{custom_keyword}} /
中图分类号:
68Q40
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Curto C, Itskov V, Veliz-Cuba A, et al. The neural ring:An algebraic tool for analyzing the intrinsic structure of neural codes. Bull. Math. Biol., 2013, 75(9):1571-1611.
[2] Curto C, Youngs N. Neural ring homomorphisms and maps between neural codes. Topological Data Analysis:The Abel Symposium , 2020, 15:163-180.
[3] Petersen E, Youngs N, Kruse R, et al. Neural ideals in SageMath. ICMS, 2016, DOI:10.1007/978-3-319-96418-8_22.
[4] Geller H, Rebecca G. Canonical forms of neural ideals.AWM Research Symposium, 2022, https://arxiv.org/abs/2209.09948v1.
[5] Franke M K, Muthiah S. Every binary code can be realized by convex sets. Advances in Applied Mathematics, 2017, 99:83-93.
[6] Perez A R, Matusevich L F, Shiu A. Neural codes and the factor complex. Advances in Applied Mathematics, 2020, 114:101977.
[7] Jeffs R, Omar M, Youngs N. Neural ideal preserving homomorphisms. Journal of Pure Applied Algebra, 2018, 222(11):3470-3482.
[8] Christensen K, Kulosman H. Some remarks about trunks and morphisms of neural codes. Mathematics for Applications, 2020, 9:3-16.
[9] Garcia R, David L, Puente G, et al. Gröbner bases of neural ideals. International Journal of Algebra and Computation, 2018, 28(4):553-571.
[10] Jamshidi S, Kang E, Petrovic S. Predicting the cardinality of a reduced Gröbner basis. 2023, arXiv:2302.05364.
[11] Christensen K, Kulosman H. Some remarks about trunks and morphisms of neural codes. Mathematics for Applications, 2020, 9:3-16.
[12] Chen A, Frick F, Shiu A. Neural codes, decidability and a new local obstruction to convexity. SIAM Journal on Applied Algebra and Geometry, 2019, 3(1):44-66.
[13] Buchberger B. gro Bases:An Algorithmic Method in Polynomial Ideal Theory. Dodrecht Boston Lancaster:Reidel Publishing Company, 1985.
[14] Eisenbud D. Commutative Algebra with a View Toward Algebraic Geometry. Berlin:Springer, 2004.
[15] Kunz E. Introduction to Commutative Algebra and Algebraic Geometry. Switzerland:Birkha-user, 1991.
[16] Zheng L, Li D, Liu J. An improvement for GVW. Journal of Systems Science&Complexity, 2022, 35(1):427-436.
[17] Kreuzer M, Robbiano L. Computational Commutative Algebra. Berlin:Springer Verlag, 2008.
[18] David A, Little J, Shea D. An Introduction to Computational Algebraic Geometry and% Commutative Algebra. Secaucus:Inc. Secaucus, 2007.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目(12201204, 11971161, 12271154), 湖南省自然科学基金(2023JJ40275, 2022JJ30234)资助课题.
{{custom_fund}}