伽马过程是分析单调退化数据的常用模型之一.对伽马退化模型进行参数估计需要假定其形状函数的具体形式. 然而,有时候可能并没有足够的信息来选择合适的函数形式,此时参数估计方法就不再适用. 针对Song 和 Cui (2022)所提出的二元伽马退化模型, 文章研究了其形状函数的非参数估计问题,提出了一种基于期望最大化算法的估计方法.文章通过数值模拟验证了所提方法的有效性,并进行了实例分析来说明该方法的应用.
Abstract
The gamma process is one of the widely used models for analyzing monotonic degradation data. Parametric estimation of the gamma process-based degradation models requires one to postulate specific forms for shape functions. However, there may sometimes be no enough information to determine appropriate functional forms, which makes the parametric estimation method inapplicable. Regarding the bivariate gamma degradation model proposed by Song and Cui (2022), this paper investigates the problem of estimating shape functions nonparametrically. An efficient estimation procedure is developed based on the expectation maximization algorithm. Numerical simulations are performed, and the results demonstrate the effectiveness of the proposed method. Finally, a real data set is analyzed for illustration.
关键词
期望最大化算法 /
伽马过程 /
非参数估计 /
可靠性 /
形状函数
{{custom_keyword}} /
Key words
Expectation maximization algorithm /
Gamma process /
nonparametric estimation /
reliability /
shape function
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ye Z, Xie M. Stochastic modelling and analysis of degradation for highly reliable products. Applied Stochastic Models in Business and Industry, 2015, 31:16-32.
[2] 潘尔顺, 陈震. 高可靠性产品退化建模研究综述. 工业工程与管理, 2015, 20:1-6, 13.(Pan E S, Chen Z. Review of degradation model for high reliability products. Industrial Engineering and Management, 2015, 20:1-6, 13.)
[3] van Noortwijk J M. A survey of the application of gamma processes in maintenance. Reliability Engineering&System Safety, 2009, 94:2-21.
[4] 胡昌华,樊红东,王兆强.设备剩余寿命预测与最优维修决策.北京:国防工业出版社, 2018.(Hu C H, Fan H D, Wang Z Q. Residual Life Prediction and Optimal Maintenance Decision for a Piece of Equipment. Beijing:National Defense Industry Press, 2018.)
[5] Peng W, Li Y, Yang Y, et al. Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas. IEEE Transactions on Reliability, 2016, 65:624-639.
[6] Song K, Cui L. A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction. Reliability Engineering&System Safety, 2022, 219:108200.
[7] Ye Z, Xie M, Tang L, et al. Semiparametric estimation of gamma processes for deteriorating products. Technometrics, 2014, 56:504-513.
[8] Mclachlan G J, Krishnan T. The EM Algorithm and Extensions. Hoboken:John Wiley&Sons, 2008.
[9] Lawless J F. Statistical Models and Methods for Lifetime Data. New York:John Wiley&Sons, 1982.
[10] Zaigraev A, Podraza-Karakulska A. On estimation of the shape parameter of the gamma distribution. Statistics&Probability Letters, 2008, 78:286-295.
[11] Xu A, Shen L, Wang B, et al. On modeling bivariate Wiener degradation process. IEEE Transactions on Reliability, 2018, 67:897-906.
[12] Lawless J, Crowder M. Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis, 2004, 10:213-227.
[13] Wang X, Balakrishnan N, Guo B, et al. Residual life estimation based on bivariate non-stationary gamma degradation process. Journal of Statistical Computation and Simulation, 2015, 85:405-421.
[14] Fang G, Pan R, Wang Y. Inverse Gaussian processes with correlated random effects for multivariate degradation modeling. European Journal of Operational Research, 2022, 300:1177-1193.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金,(12301375)资助课题.
{{custom_fund}}