• • 上一篇    下一篇

非线性年龄等级结构种群系统的边界控制问题

窦艺萌,何泽荣   

  1. 杭州电子科技大学运筹与控制研究所, 杭州 310018
  • 收稿日期:2022-06-05 修回日期:2022-09-17 出版日期:2023-02-25 发布日期:2023-03-16
  • 通讯作者: 何泽荣,Email:zrhe@hdu.edu.cn
  • 基金资助:
    国家自然科学基金(11871185)资助课题.

窦艺萌,何泽荣. 非线性年龄等级结构种群系统的边界控制问题[J]. 系统科学与数学, 2023, 43(2): 295-309.

DOU Yimeng, HE Zerong. Boundary Control Problems for a Nonlinear Hierarchical Age-Structured Population System[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(2): 295-309.

Boundary Control Problems for a Nonlinear Hierarchical Age-Structured Population System

DOU Yimeng, HE Zerong   

  1. Institute of Operational Research and Cybernetics, Hangzhou Dianzi University, Hangzhou 310018
  • Received:2022-06-05 Revised:2022-09-17 Online:2023-02-25 Published:2023-03-16
探究一类具有年龄等级结构的种群模型的边界调控问题,包括系统的能控性和最优控制.应用特征线方法和,Gronwall,不等式建立状态分布关于控制变量的连续依赖性;基于线性系统的能控性与集值映射不动点方法获得了非线性种群系统的近似能控性;运用,Ekeland,变分原理证明了最优策略的存在唯一性,构造适当的共轭系统和法向量对最优策略作出精细刻画.数值模拟结果展示了控制策略的可行性.
This article explores some boundary control problems for a hierarchical age-structured population model, which is of an integro-partial differential equation with a global feedback boundary condition; the control variable stands for input of baby individuals of the population. Firstly, the continuity of the population densities with respect to the control is established by characteristics method and Gronwall’s inequality. Then we prove that the population system is approximately controllable by means of a controllability result for linear systems and Ky Fan-Glicksberg fixed-point theorem for set-valued mappings. Thirdly, Ekeland’s variational principle is used to show the existence of unique optimal strategy, and finally, the optimal strategy is carefully depicted via an adjoint system and a normal vector. Moreover, some numerical experiments display the feasibility of the boundary control policy.

MR(2010)主题分类: 

()
[1] Medhin N G. Optimal harvesting in age-structured populations. J. Optim. Theor. Appl., 1992, 74(3):413-423.
[2] 于景元, 郭宝珠, 朱广田. 人口分布参数系统控制理论. 武汉:华中理工大学出版社, 1999.(Yu J, Guo B, Zhu G. Control Theory of Distributed ParametersPopulation Systems. Wuhan:Press of Central China University ofScience and Technology, 1999.)
[3] Barbu V, Iannelli M, Martcheva M. On the controllability of the Lotka-McKendrick model of population dynamics. J. Math. Anal. Appl., 2000, 253:142-165.
[4] Anita S. Analysis and Control of Age-Dependent PopulationDynamics. Dordrecht/Boston/London:Kluwer Academic Publishers,2000.
[5] Ainseba B. Exact and approximate controllabilityof the age and space structured population dynamics model. J.Math. Anal. Appl., 2002, 275:562-574.
[6] Ainseba B, Iannelli M. Exact controllability of a nonlinear population-dynamics problem. J. Math. Anal. Appl., 2003, 16(11):1369-1384.
[7] Luo Z, Li W T, Wang M. Optimal harvesting control problem forlinear periodic age-dependent population dynamics. Applied Mathematics and Computation, 2004, 151:789-800.
[8] Zhao C, Wang M S, Zhao P. Optimal harvesting problems forage-dependent interacting species with diffusion. AppliedMathematics and Computation, 2005, 163:117-129.
[9] Zhao C, Zhao P, Wang M S. Optimal harvesting for nonlinear age-dependent population dynamics. Mathematical and Computer Modelling, 2006, 43:310-319.
[10] Fister K R, Lenhart S. Optimal harvesting inage-structured predator-prey model. Appl. Math. Optim., 2006, 54:1-15.
[11] 付军, 陈任昭. 年龄相关的时变种群系统的边界能控性. 东北师大学报(自然科学版), 2007, 39(1):1-6.(Fu J, Chen R Z. Boundary controllability for time-varyingpopulation system with age dependence. Journal of NortheastNormal University (Natural Science Edition), 2007, 39(1):1-6.)
[12] Dewsbury D A. Dominance rank, copulatory behavior, and differential reproduction. The Quarterly Review of Biology, 1982, 57(2):135-159.
[13] 何泽荣, 倪冬冬, 王淑平. 一类等级结构种群系统的调控问题. 系统科学与数学, 2018, 38(10):1140-1148.(He Z R, Ni D, Wang S. Control problems of a kind of hierarchical population system. Journal of Systems Science and Mathematical Sciences, 2018, 38(10):1140-1148.)
[14] He Z R, Ni D, Wang S P. Optimal harvesting of a hierarchical age-structured population system. International Journal of Biomathematics, 2019, 12(8):195009101-195009125.
[15] 何泽荣, 王淑平, 章春国. 非线性年龄等级结构种群系统的近似能控性. 系统科学与数学, 2020, 40(5):775-782.(He Z R, Wang S P, Zhang C G. Approximate controllability for a nonlinear hierarchical age-structured population system. Journal of Systems Science and Mathematical Sciences, 2020, 40(5):775-782.)
[16] He Z R, Han M. Theoretical results of optimalharvesting in a hierarchical size-structured population system withdelay. International Journal of Biomathematics, 2021, 14(7):215005401-215005419.%\newpage
[17] 何泽荣, 周楠. 基于等级结构的两种群系统的最优初始分布控制. 系统科学与数学, 2021, 41(8):2063-2076.(He Z R, Zhou N. Optimal control of initial distributions in a hierarchical two age-structured population system. Journal of Systems Science and Mathematical Sciences, 2021, 41(8):2063-2076.)
[18] He Z, Ni D, Liu Y. Theory and approximation ofsolutions to a controlled hierarchical age-structured population model. Journal of Applied Analysis and Computation, 2018, 8(5):1326-1341.
[19] Zeidler E. Nonlinear Functional Analysis and Its Applications (Translated by Peter R. Wadsack). Berlin:Springer-Verlag, 1986.
[20] Yosida K. Functional Analysis. Beijing:Beijing World Publishing Corporation, 1999.
[21] Barbu V, Iannelli M. Optimal control of population dynamics. J. Optim. Theo. Appl., 1999, 102:1-14.
[22] Ekeland I. On the variational principle. J. Math. Anal. Appl., 1974, 47:324-353.
[1] 钟佳岐, 陈晓雷, 曾诚. 具有执行器饱和的多智能体系统$H_\infty$边界一致性控制[J]. 系统科学与数学, 2023, 43(1): 29-43.
[2] 何泽荣, 秦婉玉. 融合空间扩散与等级结构的种群系统的最优收获控制[J]. 系统科学与数学, 2022, 42(2): 240-254.
[3] 党佳丽, 王树波. 含齿隙非线性的双电机伺服系统最优控制[J]. 系统科学与数学, 2022, 42(12): 3189-3200.
[4] 何泽荣, 周楠. 年龄等级结构捕食系统模型的最优控制[J]. 系统科学与数学, 2021, 41(5): 1191-1202.
[5] 李丹,唐应辉. 基于 Min$\left( N,D,V \right)$- 策略和单重休假且休假不中断的~$M/G/1$ 排队系统[J]. 系统科学与数学, 2021, 41(2): 533-556.
[6] 吴功兴, 阙凌燕, 琚春华. 基于帕累托前沿的双目标两阶段电网电压优化方法[J]. 系统科学与数学, 2021, 41(11): 3207-3217.
[7] 王冬妮,翟金刚,冯恩民. 一类连续发酵的分数阶建模及参数辨识[J]. 系统科学与数学, 2020, 40(9): 1517-1530.
[8] 何泽荣,王淑平,章春国. 非线性年龄等级结构种群系统的近似能控性[J]. 系统科学与数学, 2020, 40(5): 775-782.
[9] 张海森,张旭. 随机最优控制的二阶必要条件综述[J]. 系统科学与数学, 2019, 39(2): 228-265.
[10] 刘康生,黄景芳,于欣.  抛物系统时间最优控制问题有限维逼近的误差估计[J]. 系统科学与数学, 2019, 39(2): 311-325.
[11] 王敏,唐应辉. 基于~${\rm Min}\left( N,D,V \right)$- 策略和单重休假的~$M/G/1$ 排队系统的最优控制策略[J]. 系统科学与数学, 2018, 38(9): 1067-1084.
[12] 贾彦娜. 自抗扰控制处理边界带有干扰的具有尖端质量的 Timoshenko 梁方程的稳定性[J]. 系统科学与数学, 2018, 38(11): 1252-1266.
[13] 何泽荣,倪冬冬,王淑平.  一类等级结构种群系统的调控问题[J]. 系统科学与数学, 2018, 38(10): 1140-1148.
[14] 何泽荣,倪冬冬,郑敏. 具有尺度结构和时滞的种群系统遍历性与最优控制[J]. 系统科学与数学, 2018, 38(1): 1-15.
[15] 杨剑锋,姚华实,石戈. 并联型APF抗启动冲击的时间最优控制算法研究[J]. 系统科学与数学, 2017, 37(9): 1904-1914.
阅读次数
全文


摘要