陈振龙1,2, 金上1,2
陈振龙,金上. 双边Burr分布及其在金融市场风险预测与优化中的应用[J]. 系统科学与数学, 2023, 43(2): 505-530.
CHEN Zhenlong, JIN Shang. Two-Sided Burr Distribution and Its Application in Risk Prediction and Optimization of Financial Market[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(2): 505-530.
CHEN Zhenlong1,2, JIN Shang1,2
MR(2010)主题分类:
分享此文:
[1] 龚锐, 陈仲常, 杨栋锐. GARCH族模型计算中国股市在险价值(VaR)风险的比较研究与评述. 数量经济技术经济研究, 2005, 22(7):67-82. (Gong R, Chen Z C, Yang D R. To evaluate VaR of China stock marketing comparatively by using GARCH family model and comment. The Journal of Quantitative & Technical Economics, 2005, 22(7):67-82.) [2] Dendramis Y, Spungin G E, Tzavalis E. Forecasting VaR models under different volatility processes and distributions of return innovations. Journal of Forecasting, 2014, 33(7):515-531. [3] Wang C, Chen Q, Gerlach R. Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution. Quantitative Finance, 2019, 19(6):1017-1042. [4] Altun E. A new approach to value-at-risk:GARCH-TSLx model with inference. Communications in Statistics:Simulation & Computation, 2020, 49(12):3134-3151. [5] 潘志远, 孙显超. Copula方法中的边缘分布设定需要计量检验吗?——基于CVaR框架的资产组合视角. 系统科学与数学, 2017, 37(2):537-552. (Pan Z Y, Sun X C. Does marginal distribution require to be tested in Copula method? An asset allocation perspective based on CVaR framework. Journal of Systems Science and Mathematical Sciences, 2017, 37(2):537-552.) [6] 黄金波, 吴莉莉, 尤亦玲. 非对称Laplace分布下的均值-VaR模型. 中国管理科学, 2022, 30(5):31-40. (Huang J B, Wu L L, You Y L. Mean-VaR model based on the asymmetric Laplace distribution. Chinese Journal of Management Science, 2022, 30(5):31-40.) [7] Silahli B, Dingec K D, Cifter A, et al. Portfolio value-at-risk with two-sided Weibull distribution:Evidence from cryptocurrency markets. Finance Research Letters, 2021, 38:101425.%注:超过三个作者的文献排版格式 [8] 刘荣玄, 朱先阳, 朱少平, 等. 三参数Burr分布族参数的经验Bayes估计的优良性. 系统科学与数学, 2013, 33(8):913-921. (Liu R X, Zhu X Y, Zhu S P, et al. The excellent properties of the empirical Bayes estimation of the parameters of the three- parameters Burr distribution families. Journal of Systems Science and Mathematical Sciences, 2013, 33(8):913-921.) [9] 鄢伟安,杨海军,周俊杰. 基于自适应逐步II型混合截尾试验Burr-XII分布的统计分析. 系统工程理论与实践, 2020, 40(5):1339-1349. (Yan W A, Yang H J, Zhou J J. Statistical analysis of Burr-XII distribution under adaptive Type-II progressively hybrid censored scheme. Systems Engineering——Theory & Practice, 2020, 40(5):1339-1349.) [10] Korkmaz M C, Chesneau C. On the unit Burr-XII distribution with the quantile regression modeling and applications. Computational and Applied Mathematics, 2021, 40(1):1-29. [11] Joudaki B H, Hashemi R, Khazaei S. Survival analysis using Dirichlet process mixture model with three-parameter Burr XII distribution as kernel. Communications in Statistics:Simulation & Computation, 2022. https://doi.org/10.1080/03610918.2022.2076868. [12] Ozkok E, Streftaris G, Waters H R, et al. Bayesian modelling of the time delay between diagnosis and settlement for Critical Illness Insurance using a Burr generalised-linear-type model. Insurance:Mathematics & Economics, 2012, 50(2):266-279. [13] 文凤华, 唐海如, 刘晓群, 等. 中国证券市场的HAR-BACD-V模型及其应用. 系统工程理论与实践, 2012, 32(3):608-613. (Wen F H, Tang H R, Liu X Q, et al. HAR-BACD-V model and its application to Chinese stock market. Systems Engineering——Theory & Practice, 2012, 32(3):608-613.) [14] Huptas R. Point and density prediction of intra-day volume using Bayesian linear ACV models:Evidence from the Polish stock market. Quantitative Finance, 2018, 18(5):749-760. [15] Usta I. Different estimation methods for the parameters of the extended Burr XII distribution. Journal of Applied Statistics, 2013, 40(2):397-414. [16] Swain J J, Venkatraman S, Wilson J R. Least-squares estimation of distribution functions in Johnson's translation system. Journal of Statistical Computation and Simulation, 1988, 29(4):271-297. [17] Glosten L, Jagannathan R, Runkle D E. On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 1993, 48(5):1779-1801. [18] Smetanina E. Real-time GARCH. Journal of Financial Econometrics, 2017, 15(4):561-601. [19] Francq C, Zakoian J M. GARCH Models: Structure, Statistical Inference and Financial Applications. Wiley, 2010. [20] Sun H, Yu B. Volatility Asymmetry in Functional Threshold GARCH model. Journal of Time Series Analysis, 2020, 41(1):95-109. [21] 蔡光辉, 吴志敏. 基于门槛效应的Realized MAT-HAR GARCH模型波动预测. 系统科学与数学, 2021, 41(6):1548-1571. (Cai G H, Wu Z M. Volatility forecasting of the realized MAT-HAR GARCH model based on threshold effects. Journal of Systems Science and Mathematical Sciences, 2021, 41(6):1548-1571.) [22] Christoffersen P. Evaluating interval forecasts. International Economic Review, 1998, (39):841-862. [23] 林宇, 梁州, 林子枭, 等. 基于高维R-vine Copula的金融市场投资组合优化研究. 系统工程理论与实践, 2019, 39(12):3061-3072. (Lin Y, Liang Z, Lin Z X, et al. Research on financial market portfolio optimization based on high-dimensional R-vine Copula. Systems Engineering——Theory & Practice, 2019, 39(12):3061-3072.) [24] 蔡光辉, 徐君, 应雪海. 基于GAS的混频Copula模型的投资组合风险预测. 系统工程理论与实践, 2021, 41(8):2030-2044. (Cai G H, Xu J, Ying X H. Risk forecast of investment portfolio based on GAS MIDAS Copula model. Systems Engineering——Theory & Practice, 2021, 41(8):2030-2044.) [25] 陈振龙, 郝晓珍. 基于藤Copula分组模型的金融市场风险度量研究. 统计研究, 2018, 35(6):77-84. (Chen Z L, Hao X Z. Measuring the risk of financial market based on Vine Copula grouped mode. Statistical Research, 2018, 35(6):77-84.) [26] 刘坚, 廖曙飞, 黄钰莹, 等. 基于SV-Copula的欧盟碳配额现货和期货价格相依性研究. 系统工程理论与实践, 2020, 40(7):1694-1706. (Liu J, Liao S F, Huang Y Y, et al. Research on the dependence of spot and future prices of EUA based on SV-Copula model. Systems Engineering——Theory & Practice, 2020, 40(7):1694-1706.) [27] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk. Journal of Risk, 2000, 2:21-42. [28] Zivot E, Wang J. Rolling analysis of time series. Modeling Financial Time Series with S-Plus. New York, NY:Springer, 2003, 299-346. [29] Embrechts P, Kaufmann R, Patie P. Strategic long-term financial risks:Single risk factors. Computational Optimization and Applications, 2005, 32(1-2):61-90. [30] Creal D, Koopman S J, Lucas A. Generalized autoregressive score models with applications. Application Economic, 2013, 28:777-795. |
[1] | 倪宣明, 陈檬檬, 钱龙, 赵慧敏. 基于因子载荷二叉树的高维投资组合优化[J]. 系统科学与数学, 2022, 42(9): 2312-2326. |
[2] | 刘丽萍, 吕政. 高维时变投资组合模型的构造及估计[J]. 系统科学与数学, 2022, 42(9): 2367-2382. |
[3] | 刘俊杰, 胡永宏. 基于group SCAD惩罚的非对称乘法copula模型选择及其应用[J]. 系统科学与数学, 2022, 42(9): 2508-2530. |
[4] | 赵霞, 时雨, 欧阳资生. 基于尾部风险差异性态度的多目标投资组合策略[J]. 系统科学与数学, 2022, 42(5): 1129-1144. |
[5] | 孙会霞, 赵慧敏, 张超, 郑田田. 基于集成学习的加权投资组合优化[J]. 系统科学与数学, 2022, 42(5): 1145-1160. |
[6] | 张晓琴, 卫夏利, 米子川, 李顺勇. 基于MCP的非对称最小二乘估计[J]. 系统科学与数学, 2022, 42(5): 1344-1360. |
[7] | 朱其新, 金雨昇, 刘红俐, 朱永红. 一种Jerk平滑的非对称正弦轨迹规划设计方法[J]. 系统科学与数学, 2022, 42(3): 555-567. |
[8] | 张小圆, 邓昌瑞, 黄艳梅, 鲍玉昆. 基于Jackknife模型平均的社会用电量预测研究[J]. 系统科学与数学, 2022, 42(3): 588-598. |
[9] | 刘淳, 马超, 冯永春, 王著秀. 电力消费、产业结构与经济增长的关系——Large基于甘肃省地级市数据面板向量自回归(PVAR)模型的研究[J]. 系统科学与数学, 2022, 42(3): 599-613. |
[10] | 钱龙, 韦江, 赵慧敏, 倪宣明. 基于AdaBoost的投资组合优化[J]. 系统科学与数学, 2022, 42(2): 271-286. |
[11] | 朱松平, 叶阿忠. 技术进步视角下经济政策不确定性对经济增长的影响研究[J]. 系统科学与数学, 2022, 42(2): 398-416. |
[12] | 曹桃云, 张日权. 非对称误差分布的贝叶斯累加回归树模型研究及应用[J]. 系统科学与数学, 2022, 42(11): 3119-3133. |
[13] | 曹梦娜, 田萍, 李高荣. 最优投资组合的Lasso惩罚分位数回归研究[J]. 系统科学与数学, 2021, 41(9): 2595-2611. |
[14] | 蔡光辉, 徐君, 应雪海. 基于混频抽样和杠杆效应的高频波动率模型预测[J]. 系统科学与数学, 2021, 41(7): 1985-2005. |
[15] | 欧阳资生, 李虹宣, 杨希特. 网络舆情对中国上市金融机构系统性风险影响研究[J]. 系统科学与数学, 2021, 41(5): 1339-1354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||