• • 上一篇    下一篇

双边Burr分布及其在金融市场风险预测与优化中的应用

陈振龙1,2, 金上1,2   

  1. 1. 浙江工商大学统计与数学学院, 杭州 310018;
    2. 浙江工商大学统计数据工程技术与应用协同创新中心, 杭州 310018
  • 收稿日期:2022-06-03 修回日期:2022-09-09 出版日期:2023-02-25 发布日期:2023-03-16
  • 通讯作者: 金上,Email:shangjin2058@163.com
  • 基金资助:
    浙江省自然科学基金项目(LY21G010003),国家自然科学基金项目(11971432),浙江省自然科学基金项目(LQ22G010001),浙江省哲学社会科学规划领军人才培养项目(22YJRC07ZD-2YB),浙江省重点建设高校特色优势学科(浙江工商大学统计学)和统计数据工程技术与应用协同创新中心资助课题.

陈振龙,金上. 双边Burr分布及其在金融市场风险预测与优化中的应用[J]. 系统科学与数学, 2023, 43(2): 505-530.

CHEN Zhenlong, JIN Shang. Two-Sided Burr Distribution and Its Application in Risk Prediction and Optimization of Financial Market[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(2): 505-530.

Two-Sided Burr Distribution and Its Application in Risk Prediction and Optimization of Financial Market

CHEN Zhenlong1,2, JIN Shang1,2   

  1. 1. School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018;
    2. Collaborative Innovation Center of Statistical Data Engineering, Technology & Application, Zhejiang Gongshang University, Hangzhou 310018
  • Received:2022-06-03 Revised:2022-09-09 Online:2023-02-25 Published:2023-03-16
考虑到金融数据具有非对称、尖峰厚尾特征,文章将具有尖峰厚尾特征的Burr分布拓展至双边Burr (TSB)分布,给出了其重要的数字特征、极大似然估计、最小二乘估计以及加权最小二乘估计,并通过数值模拟验证了这三种参数估计方法的有效性.其次,文章基于TSB分布构建GJR-GARCH模型,旨在研究TSB分布相比于常见分布在度量金融风险方面的优势.实证结果表明,与正态分布、t分布、GED分布、双边Weibull分布和双边Lomax分布相比,基于该分布的GJR-GARCH模型具有最高的VaR预测精度.另外,文章将基于TSB分布的GJR-GARCH模型与Copula函数结合来构建均值-CVaR模型以研究多元投资组合的风险优化,实证研究亦表明能够刻画非对称特征的该模型具有更好的CVaR预测效果.最后,稳健性检验结果证实TSB分布对于金融风险预测以及投资组合优化的改进效果不依赖于波动率模型和Copula函数的设定.
Considering that financial data usually has asymmetry, leptokurtosis and fat tail, this paper extends the Burr distribution with the leptokurtosis and fat tail to the two-sided Burr (TSB) distribution, and gives its important statistical properties, maximum likelihood estimation, least squares estimation and weighted least squares estimation, and verifies the effectiveness of above three estimation methods by numerical simulation. Secondly, this paper constructs GJR-GARCH model based on TSB distribution to investigate the advantages of TSB distribution in terms of measuring financial risk compared with common distributions. The empirical results show that the GJR-GARCH model based on TSB distribution has the highest VaR prediction accuracy compared with the normal distribution, t distribution, GED distribution, two-sided Weibull distribution and two-sided Lomax distribution. Furthermore, the mean-CVaR model is established by combining the GJR-GARCH model based on TSB distribution and the Copula function and then used to study the risk optimization of portfolio. The empirical research also indicates that the model which can describe the asymmetric characteristic has better CVaR prediction effect. Finally, the robustness test results confirm that the improvement effect of TSB distribution on financial risk prediction and portfolio optimization does not depend on the setting of volatility model and Copula function.

MR(2010)主题分类: 

()
[1] 龚锐, 陈仲常, 杨栋锐. GARCH族模型计算中国股市在险价值(VaR)风险的比较研究与评述. 数量经济技术经济研究, 2005, 22(7):67-82. (Gong R, Chen Z C, Yang D R. To evaluate VaR of China stock marketing comparatively by using GARCH family model and comment. The Journal of Quantitative & Technical Economics, 2005, 22(7):67-82.)
[2] Dendramis Y, Spungin G E, Tzavalis E. Forecasting VaR models under different volatility processes and distributions of return innovations. Journal of Forecasting, 2014, 33(7):515-531.
[3] Wang C, Chen Q, Gerlach R. Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution. Quantitative Finance, 2019, 19(6):1017-1042.
[4] Altun E. A new approach to value-at-risk:GARCH-TSLx model with inference. Communications in Statistics:Simulation & Computation, 2020, 49(12):3134-3151.
[5] 潘志远, 孙显超. Copula方法中的边缘分布设定需要计量检验吗?——基于CVaR框架的资产组合视角. 系统科学与数学, 2017, 37(2):537-552. (Pan Z Y, Sun X C. Does marginal distribution require to be tested in Copula method? An asset allocation perspective based on CVaR framework. Journal of Systems Science and Mathematical Sciences, 2017, 37(2):537-552.)
[6] 黄金波, 吴莉莉, 尤亦玲. 非对称Laplace分布下的均值-VaR模型. 中国管理科学, 2022, 30(5):31-40. (Huang J B, Wu L L, You Y L. Mean-VaR model based on the asymmetric Laplace distribution. Chinese Journal of Management Science, 2022, 30(5):31-40.)
[7] Silahli B, Dingec K D, Cifter A, et al. Portfolio value-at-risk with two-sided Weibull distribution:Evidence from cryptocurrency markets. Finance Research Letters, 2021, 38:101425.%注:超过三个作者的文献排版格式
[8] 刘荣玄, 朱先阳, 朱少平, 等. 三参数Burr分布族参数的经验Bayes估计的优良性. 系统科学与数学, 2013, 33(8):913-921. (Liu R X, Zhu X Y, Zhu S P, et al. The excellent properties of the empirical Bayes estimation of the parameters of the three- parameters Burr distribution families. Journal of Systems Science and Mathematical Sciences, 2013, 33(8):913-921.)
[9] 鄢伟安,杨海军,周俊杰. 基于自适应逐步II型混合截尾试验Burr-XII分布的统计分析. 系统工程理论与实践, 2020, 40(5):1339-1349. (Yan W A, Yang H J, Zhou J J. Statistical analysis of Burr-XII distribution under adaptive Type-II progressively hybrid censored scheme. Systems Engineering——Theory & Practice, 2020, 40(5):1339-1349.)
[10] Korkmaz M C, Chesneau C. On the unit Burr-XII distribution with the quantile regression modeling and applications. Computational and Applied Mathematics, 2021, 40(1):1-29.
[11] Joudaki B H, Hashemi R, Khazaei S. Survival analysis using Dirichlet process mixture model with three-parameter Burr XII distribution as kernel. Communications in Statistics:Simulation & Computation, 2022. https://doi.org/10.1080/03610918.2022.2076868.
[12] Ozkok E, Streftaris G, Waters H R, et al. Bayesian modelling of the time delay between diagnosis and settlement for Critical Illness Insurance using a Burr generalised-linear-type model. Insurance:Mathematics & Economics, 2012, 50(2):266-279.
[13] 文凤华, 唐海如, 刘晓群, 等. 中国证券市场的HAR-BACD-V模型及其应用. 系统工程理论与实践, 2012, 32(3):608-613. (Wen F H, Tang H R, Liu X Q, et al. HAR-BACD-V model and its application to Chinese stock market. Systems Engineering——Theory & Practice, 2012, 32(3):608-613.)
[14] Huptas R. Point and density prediction of intra-day volume using Bayesian linear ACV models:Evidence from the Polish stock market. Quantitative Finance, 2018, 18(5):749-760.
[15] Usta I. Different estimation methods for the parameters of the extended Burr XII distribution. Journal of Applied Statistics, 2013, 40(2):397-414.
[16] Swain J J, Venkatraman S, Wilson J R. Least-squares estimation of distribution functions in Johnson's translation system. Journal of Statistical Computation and Simulation, 1988, 29(4):271-297.
[17] Glosten L, Jagannathan R, Runkle D E. On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 1993, 48(5):1779-1801.
[18] Smetanina E. Real-time GARCH. Journal of Financial Econometrics, 2017, 15(4):561-601.
[19] Francq C, Zakoian J M. GARCH Models: Structure, Statistical Inference and Financial Applications. Wiley, 2010.
[20] Sun H, Yu B. Volatility Asymmetry in Functional Threshold GARCH model. Journal of Time Series Analysis, 2020, 41(1):95-109.
[21] 蔡光辉, 吴志敏. 基于门槛效应的Realized MAT-HAR GARCH模型波动预测. 系统科学与数学, 2021, 41(6):1548-1571. (Cai G H, Wu Z M. Volatility forecasting of the realized MAT-HAR GARCH model based on threshold effects. Journal of Systems Science and Mathematical Sciences, 2021, 41(6):1548-1571.)
[22] Christoffersen P. Evaluating interval forecasts. International Economic Review, 1998, (39):841-862.
[23] 林宇, 梁州, 林子枭, 等. 基于高维R-vine Copula的金融市场投资组合优化研究. 系统工程理论与实践, 2019, 39(12):3061-3072. (Lin Y, Liang Z, Lin Z X, et al. Research on financial market portfolio optimization based on high-dimensional R-vine Copula. Systems Engineering——Theory & Practice, 2019, 39(12):3061-3072.)
[24] 蔡光辉, 徐君, 应雪海. 基于GAS的混频Copula模型的投资组合风险预测. 系统工程理论与实践, 2021, 41(8):2030-2044. (Cai G H, Xu J, Ying X H. Risk forecast of investment portfolio based on GAS MIDAS Copula model. Systems Engineering——Theory & Practice, 2021, 41(8):2030-2044.)
[25] 陈振龙, 郝晓珍. 基于藤Copula分组模型的金融市场风险度量研究. 统计研究, 2018, 35(6):77-84. (Chen Z L, Hao X Z. Measuring the risk of financial market based on Vine Copula grouped mode. Statistical Research, 2018, 35(6):77-84.)
[26] 刘坚, 廖曙飞, 黄钰莹, 等. 基于SV-Copula的欧盟碳配额现货和期货价格相依性研究. 系统工程理论与实践, 2020, 40(7):1694-1706. (Liu J, Liao S F, Huang Y Y, et al. Research on the dependence of spot and future prices of EUA based on SV-Copula model. Systems Engineering——Theory & Practice, 2020, 40(7):1694-1706.)
[27] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk. Journal of Risk, 2000, 2:21-42.
[28] Zivot E, Wang J. Rolling analysis of time series. Modeling Financial Time Series with S-Plus. New York, NY:Springer, 2003, 299-346.
[29] Embrechts P, Kaufmann R, Patie P. Strategic long-term financial risks:Single risk factors. Computational Optimization and Applications, 2005, 32(1-2):61-90.
[30] Creal D, Koopman S J, Lucas A. Generalized autoregressive score models with applications. Application Economic, 2013, 28:777-795.
[1] 倪宣明, 陈檬檬, 钱龙, 赵慧敏. 基于因子载荷二叉树的高维投资组合优化[J]. 系统科学与数学, 2022, 42(9): 2312-2326.
[2] 刘丽萍, 吕政. 高维时变投资组合模型的构造及估计[J]. 系统科学与数学, 2022, 42(9): 2367-2382.
[3] 刘俊杰, 胡永宏. 基于group SCAD惩罚的非对称乘法copula模型选择及其应用[J]. 系统科学与数学, 2022, 42(9): 2508-2530.
[4] 赵霞, 时雨, 欧阳资生. 基于尾部风险差异性态度的多目标投资组合策略[J]. 系统科学与数学, 2022, 42(5): 1129-1144.
[5] 孙会霞, 赵慧敏, 张超, 郑田田. 基于集成学习的加权投资组合优化[J]. 系统科学与数学, 2022, 42(5): 1145-1160.
[6] 张晓琴, 卫夏利, 米子川, 李顺勇. 基于MCP的非对称最小二乘估计[J]. 系统科学与数学, 2022, 42(5): 1344-1360.
[7] 朱其新, 金雨昇, 刘红俐, 朱永红. 一种Jerk平滑的非对称正弦轨迹规划设计方法[J]. 系统科学与数学, 2022, 42(3): 555-567.
[8] 张小圆, 邓昌瑞, 黄艳梅, 鲍玉昆. 基于Jackknife模型平均的社会用电量预测研究[J]. 系统科学与数学, 2022, 42(3): 588-598.
[9] 刘淳, 马超, 冯永春, 王著秀. 电力消费、产业结构与经济增长的关系——Large基于甘肃省地级市数据面板向量自回归(PVAR)模型的研究[J]. 系统科学与数学, 2022, 42(3): 599-613.
[10] 钱龙, 韦江, 赵慧敏, 倪宣明. 基于AdaBoost的投资组合优化[J]. 系统科学与数学, 2022, 42(2): 271-286.
[11] 朱松平, 叶阿忠. 技术进步视角下经济政策不确定性对经济增长的影响研究[J]. 系统科学与数学, 2022, 42(2): 398-416.
[12] 曹桃云, 张日权. 非对称误差分布的贝叶斯累加回归树模型研究及应用[J]. 系统科学与数学, 2022, 42(11): 3119-3133.
[13] 曹梦娜, 田萍, 李高荣. 最优投资组合的Lasso惩罚分位数回归研究[J]. 系统科学与数学, 2021, 41(9): 2595-2611.
[14] 蔡光辉, 徐君, 应雪海. 基于混频抽样和杠杆效应的高频波动率模型预测[J]. 系统科学与数学, 2021, 41(7): 1985-2005.
[15] 欧阳资生, 李虹宣, 杨希特. 网络舆情对中国上市金融机构系统性风险影响研究[J]. 系统科学与数学, 2021, 41(5): 1339-1354.
阅读次数
全文


摘要