柯丽华1,2, 唐华倩1,2, 王其虎1,2, 胡南燕1,2, 肖泽宇1,2
柯丽华,唐华倩,王其虎,胡南燕,肖泽宇. 基于二元联系数可能度函数的区间数排序方法及应用[J]. 系统科学与数学, 2023, 43(2): 417-430.
KE Lihua, TANG Huaqian, WANG Qihu, HU Nanyan, XIAO Zeyu. Ranking Method of Interval Numbers Based on Possibility Function of Binary Connection Number and Its Application[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(2): 417-430.
KE Lihua1,2, TANG Huaqian1,2, WANG Qihu1,2, HU Nanyan1,2, XIAO Zeyu1,2
MR(2010)主题分类:
分享此文:
[1] Moore R E. Interval Analysis. Englewood Cliffs, NJ:Prentice Hall, 1966. [2] 曾文艺, 罗承忠, 肉孜阿吉.区间数的综合决策模型.系统工程理论与实践, 1997, 17(11):48-50. (Zeng W Y, Luo C Z, Rouziaji. Comprehensive decision model of interval-number. Systems Engineering——Theory & Practice, 1997, 17(11):48-50.) [3] 刘进生, 王绪柱, 张宝玉.区间数排序.工程数学学报, 2001, 18(4):103-109. (Liu J S, Wang X Z, Zhang B Y. The ranking of interval numbers. Journal of Engineering Mathematics, 2001, 18(4):103-109.) [4] 赵慧冬, 包玉娥, 关世霞.区间数的几何平均排序函数及其应用.内蒙古民族大学学(自然科学版), 2011, 26(6):624-628. (Zhao H D, Bao Y E, Guan S X. Geometry average sorting function about interval number and its application. Journal of Inner Mongolia University for the Nationalities (Natural Sciences), 2011, 26(6):624-628.) [5] 王万军.区间数排序的一种联系数方法.计算机工程与设计, 2009, 30(8):2055-2057. (Wang W J. Connection numbers method for ranking interval number. Computer Engineering and Design, 2009, 30(8):2055-2057.) [6] 叶跃祥, 糜仲春, 王宏宇, 等.一种基于集对分析的区间数多属性决策方法.系统工程与电子技术, 2006, 28(9):1344-1347. (Ye Y X, Mi Z C, Wang H Y, et al. Set-pair-analysis-based method for multiple attributes decision-making with intervals. Systems Engineering and Electronics, 2006, 28(9):1344-1347.) [7] 叶义成, 姚囝, 王其虎.采用区间数排序的采矿方法优选模型及其应用.控制理论与应用, 2016, 33(8):1015-1022. (Ye Y C, Yao L, Wang Q H. Mining method optimal selection model and its application by using interval numbers ranking method. Control Theory & Applications, 2016, 33(8):1015-1022.) [8] 王中兴, 邵翠丽, 唐芝兰.基于相对优势度的区间数排序及其在多属性决策中的应用.模糊系统与数学, 2013, 27(2):142-148. (Wang Z X, Shao C L, Tang Z L. Method for ranking interval numbers based on relative superiority and its application to multiple attribute decision making. Fuzzy Systems and Mathematics, 2013. 27(2):142-148.) [9] 仇国芳, 李怀祖.区间数排序的包含度度量及构造方法.运筹与管理, 2003, 12(3):13-17. (Qiu G F, Li H Z. Measurement and construct with inclusion degree for priority of interval numbers. Operations Research and Management Science, 2003, 12(3):13-17.) [10] 兰继斌, 胡明明, 叶新苗.基于相似度的区间数排序.计算机工程与设计, 2011, 32(4):1419-1421. (Lan J B, Hu M M, Ye X M. Ranking interval numbers based on similarity. Computer Engineering and Design, 2011, 32(4):1419-1421.) [11] 李霞, 张绍林, 张淼,等.基于新距离测度的区间数排序.西华大学学报(自然科学版), 2008, 27(1):87-90. (Li X, Zhang S L, Zhang M, et al. Rank of interval numbers based on a new distance measure. Journal of Xihua University (Natural Science Edition), 2008, 27(1):87-90.) [12] 白玉娟.基于期望和宽度的新距离测度的区间数排序.河西学院学报, 2015, 31(5):13-17. (Bai Y J. A new definition of distance measure of rank of interval numbers based on the expectation and width. Journal of Hexi University, 2015, 31(5):13-17.) [13] 谭吉玉, 朱传喜, 张小芝,等.一种新的基于TOPSIS的区间数排序方法.统计与决策, 2015, 421(1):94-96. (Tan J Y, Zhu C X, Zhang X Z, et al. A new sort method of interval numbers based on TOPSIS. Statistics and Decision, 2015, 421(1):94-96.) [14] 郭志林, 薛明志. Fuzzy区间数的一种排序方法及综合评判模型.数学的实践与认识, 2005, 35(7):244-247. (Guo Z L, Xiu M Z. The ranking method of fuzzy interval numbers. Mathematics in Practice and Theory, 2005, 35(7):244-247.) [15] Sengupta A, Pal T K. On comparing interval numbers. European Journal of Operational Research, 2000, 127]:28-43. [16] 龚日朝, 李诗音, 谭可星.带分布区间数的可能度计算模型及其排序.系统工程理论与实践, 2021, 41(9): 2428-2446. (Gong R Z, Li S Y, Tan K X. Possibility calculation model of symmetric distribution interval number and its ranking method. Systems Engineering——Theory & Practice, 2021, 41(9):2428-2446.) [17] 徐泽水, 达庆利.区间数排序的可能度法及其应用.系统工程学报, 2003, 18(1):67-70. (Xu Z S, Da Q L. Possibility degree method for ranking interval numbers and its application. Journal of Systems Engineering, 2003, 18(1):67-70.) [18] Nakahara Y, Sasaki M, Gen M. On the linear programming problems with interval coefficients. International Journal of Computer Industrial Engineering, 1992, 23(1-4):301-304. [19] 高峰记.可能度及区间数综合排序.系统工程理论与实践, 2013, 33(8):2033-2040. (Gao F J. Possibility degree and comprehensive priority of interval numbers. Systems Engineering——Theory & Practice, 2013, 33(8):2033-2040.) [20] 达庆利, 刘新旺.区间数线性规划及其满意解. 系统工程理论与实践, 1999, 19(4):3-7. (Da Q L, Liu X W. Interval number linear programming and its satisfactory solution. Systems Engineering——Theory & Practice, 1999, 19(4):3-7.) [21] 李德清, 谷云东.一种基于可能度的区间数排序方法. 系统工程学报, 2008, 23(2):243-246. (Li D Q, Gu Y D. Method for ranking interval numbers based on possibility degree. Journal of Systems Engineering, 2008, 23(2):243-246.) [22] 兰继斌, 曹丽娟, 林健.基于二维优先度的区间数排序方法. 重庆工学院学报(自然科学版), 2007, 21(10):63-67. (Lan J B, Cao L J, Lin J. Method for ranking interval numbers based on two-dimensional priority degree. Journal of Chongqing Institute of Technology, 2007, 21(10):63-67.) [23] 李德清, 曾文艺, 尹乾.区间数排序方法综.北京师范大学学报(自然科学版), 2020, 56(4):483-492. (Li D Q, Zeng W Y, Yin Q. Ranking interval numbers: A review. Journal of Beijing Normal University (Natural Science), 2020, 56(4):483-492.) |
[1] | 王旭, 王应明, 蓝以信, 温槟檐. 基于双前沿面数据包络分析的区间全局 Meta-frontier Malmquist 指数及其应用研究[J]. 系统科学与数学, 2021, 41(4): 1043-1067. |
[2] | 李晔,李娟. 基于可能度函数的三参数区间灰数预测模型[J]. 系统科学与数学, 2020, 40(12): 2332-2341. |
[3] | 蓝以信,王旭,王应明. 区间型产出下的DEA-Malmquist 生产率指数及其应用研究[J]. 系统科学与数学, 2017, 37(6): 1494-1508. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||