• • 上一篇    下一篇

具有执行器饱和的多智能体系统$H_\infty$边界一致性控制

钟佳岐1, 陈晓雷1, 曾诚2   

  1. 1. 重庆邮电大学自动化学院, 重庆 400065;
    2. 贵州理工学院理学院, 贵阳 550003
  • 收稿日期:2022-04-01 修回日期:2022-08-03 出版日期:2023-01-25 发布日期:2023-02-24
  • 基金资助:
    国家自然科学基金(62003066,62163008),重庆市自然科学基金(cstc2021jcyj-msxmX0331),重庆市教委科学技术研究项目(KJQN201900614)资助课题.

钟佳岐, 陈晓雷, 曾诚. 具有执行器饱和的多智能体系统$H_\infty$边界一致性控制[J]. 系统科学与数学, 2023, 43(1): 29-43.

ZHONG Jiaqi, CHEN Xiaolei, ZENG Cheng. $H_\infty$ Boundary Consensus Control for Multi-Agent Systems with Actuator Saturation[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(1): 29-43.

$H_\infty$ Boundary Consensus Control for Multi-Agent Systems with Actuator Saturation

ZHONG Jiaqi1, CHEN Xiaolei1, ZENG Cheng2   

  1. 1. College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065;
    2. College of Science, Guizhou Institute of Technology, Guiyang 550003
  • Received:2022-04-01 Revised:2022-08-03 Online:2023-01-25 Published:2023-02-24
为了解决具有时空耦合特性的多智能体系统在执行器饱和约束下的一致性跟踪问题,文章提出了一种受限$H_\infty$边界控制策略.首先针对领导者与跟随者的时空动力学行为特征,运用克罗内克积与等价有向图,将跟踪问题转化为镇定问题,构建出由多个抛物线型偏微分方程(partial differential equation,PDE)组成的一致性误差系统.其次,通过改进李雅普诺夫方法和沃廷格不等式,推导出同时满足$H_\infty$增益和指数稳定的充分条件.再次,融合不变集理论,在线性矩阵不等式(linear matrix inequality,LMI)多目标优化的框架下,解决了Neumann边界控制器的饱和问题.最后,通过对比仿真验证了所提出方法的有效性.
In order to solve the tracking problem of multi-agent systems with spatiotemporal coupling characteristics under the actuators saturation, this paper proposes a constrained $H_\infty$ boundary consensus control strategy. First, by applying the Kronecker product and equivalent directed graph, the original consensus tracking problem is transformed into the stabilization problem of multi-agent error systems, whose model involves the multiple parabolic partial differential equations (PDEs) with Neumann boundary conditions. Subsequently, a sufficient condition on the $H_\infty$ norm and exponential stability is obtained by improving the Lyapunov-based method and Wirtinger's inequality. Then, the actuator saturation problem of Neumann boundary control is addressed by using the invariant set theory in the multi-objective optimization framework of linear matrix inequality (LMI). Finally, the comparison simulation results demonstrate the effectiveness of proposed methodology.

MR(2010)主题分类: 

()
[1] Li Y, Wang C, Liang D. Truncated prediction-based distributed consensus control of linear multi agent systems with discontinuous communication and input delay. Neurocomputing, 2020, 409:217-230.
[2] Rizk Y, Awad M, Tunstel E W. Cooperative heterogeneous multi-robot systems:A survey. ACM Computing Surveys, 2020, 52(2):1-31.
[3] Qin J, Ma Q, Shi Y, et al. Recent advances in consensus of multi-agent systems:A brief survey. IEEE Transactions on Industrial Electronics, 2017, 64(6):4972-4983.
[4] Zhang H, Gurfil P. Cooperative orbital control of multiple satellites via consensus. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5):2171-2188.
[5] 张文, 马忠军, 王毅. 带未知耦合权重的领导-跟随多智能体系统的实用一致性. 自动化学报, 2018, 44(12):2300-2304. (Zhang W, Ma Z J, Wang Y. Practical consensus of leader-following multi-agent system with unknown coupling weights. Acta Automatica Sinica, 2018, 44(12):2300-2304.)
[6] Yaghoubi Z, Talebi H A. Cluster consensus for nonlinear multi-agent systems. Journal of Intelligent & Robotic Systems, 2020, 100(3-4):1069-1084.
[7] Liu G, Pan Y, Lam H, et al. Event-triggered fuzzy adaptive quantized control for nonlinear multi-agent systems in nonaffine pure-feedback form. Fuzzy Sets and Systems, 2021, 416:27-46.
[8] Li X, Yu Z, Li Z, et al. Group consensus via pinning control for a class of heterogeneous multiagent systems with input constraints. Information Sciences, 2021, 542:247-262.
[9] Zhang H, Cai Y, Wang Y, et al. Adaptive bipartite event-triggered output consensus of heterogeneous linear multiagent systems under fixed and switching topologies. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11):4816-4830.
[10] Ao Y, Jia Y. Robust H2/H group consensus control for linear clusters over signed digraphs. Journal of the Franklin Institute, 2020, 357(12):7556-7580.
[11] Yang C, Huang T, Zhang A, et al. Output consensus of multiagent systems based on PDEs with input constraint:A boundary control approach. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(1):370-377.
[12] Freudenthaler G, Meurer T. PDE-based multi-agent formation control using flatness and backstepping:Analysis, design and robot experiments. Automatica, 2020, 115:108897.
[13] Wang J, Wu H, Huang T, et al. Pinning control strategies for synchronization of linearly coupled neural networks with reaction-diffusion terms. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4):749-761.
[14] Tang S, Qi J, Zhang J. Formation tracking control for multi-agent systems:A wave-equation based approach. International Journal of Control, Automation and Systems, 2017, 15(6):2704-2713.
[15] Lan Y, Xia J, Xia Y, et al. Iterative learning consensus control for multi-agent systems with fractional order distributed parameter models. International Journal of Control, Automation and Systems, 2019, 17(11):2839-2849.
[16] 陈振杰, 傅勤, 郁鹏飞, 等. 一类四阶偏微分多智能体系统的一致性控制. 应用数学, 2021, 34(2):448-456. (Chen Z, Fu Q, Yu P F, et al. Consensus control for a class of fourth order partial differential multi-agent systems. Mathematica Applicata, 2021, 34(2):448-456.)
[17] Foderaro G, Ferrari S, Wettergren T A. Distributed optimal control for multi-agent trajectory optimization. Automatica, 2014, 50(1):149-154.
[18] Mylvaganam T, Sassano M, Astolfi A. A differential game approach to multi-agent collision avoidance. IEEE Transactions on Automatic Control, 2017, 62(8):4229-4235.
[19] Yang C, Cao J, Huang T, et al. Guaranteed cost boundary control for cluster synchronization of complex spatio-temporal dynamical networks with community structure. Science China Information Sciences, 2018, 61(5):052203.
[20] Qi J, Zhang J, Ding Y. Wave equation-based time-varying formation control of multiagent systems. IEEE Transactions on Control Systems Technology, 2018, 26(5):1578-1591.
[21] Xu C, Dong Y, Ren Z, et al. Sensor deployment for pipeline leakage detection via optimal boundary control strategies. Journal of Industrial and Management Optimization, 2015, 11(1):199-216.
[22] Yamaguchi K, Endo T, Matsuno F. Formation control of multi-agent system based on higher order partial differential equations. IEEE Transactions on Control Systems Technology, 2021, 30(2):570-582.
[23] Zong X, Zheng J, Wei J, et al. Synchronizing controller design for networked heat equations with boundary structured time-varying perturbations and general disturbances. Journal of Process Control, 2021, 107:94-102.
[24] 郜晨, 何潇. 执行器饱和的多智能体一致性控制. 航空学报, 2020, 41(S1):72376. (Gao C, He X. Consensus control for multi-agent systems subject to actuator saturation, Acta Aeronautica Sinica, 2020, 41(S1):723760.)
[25] Yang C, Li X, Qiu J. Output synchronization control with input constraint of complex networks with reaction-diffusion terms. Neural Computing and Applications, 2018, 30(11):3295-3302.
[26] Yuan C, Ilbeigi S, Zeng W. H output containment control of heterogeneous multi-agent systems via distributed dynamic output feedback. Journal of the Franklin Institute, 2018, 355(12):5058-5081.
[27] Tan L N. Distributed H optimal tracking control for strict-feedback nonlinear large-scale systems with disturbances and saturating actuators. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(11):4719-4731.
[28] Wu H, Wang J, Li H. Design of distributed H fuzzy controllers with constraint for nonlinear hyperbolic PDE systems. Automatica, 2012, 48(10):2535-2543.
[29] Zhu H, Wu H, Wang J. H disturbance attenuation for nonlinear coupled parabolic PDE-ODE systems via fuzzy-model-based control approach. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(8):1814-1825.
[30] Yamaguchi K, Endo T, Matsuno F. Formation control of multiagent system based on higher order partial differential equations. IEEE Transactions on Control Systems Technology, 2022, 30(2):570-582.
[31] Terushkin M, Fridman E. Network-based deployment of nonlinear multi agents over open curves:A PDE approach. Automatica, 2021, 129:109697.
[32] Wang J, Wu H, Huang T, et al. Pinning control for synchronization of coupled reaction-diffusion neural networks with directed topologies. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(8):1109-1120.
[33] Fu Q, Du L, Xu G, et al. Consensus control for multi-agent systems with distributed parameter models. Neurocomputing, 2018, 308:58-64.
[34] Pilloni A, Pisano A, Orlov Y, et al. Consensus-based control for a network of diffusion PDEs with boundary local interaction. IEEE Transactions on Automatic Control, 2016, 61(9):2708-2713.
[35] Yang C, He H, Huang T, et al. Consensus for non-linear multi-agent systems modelled by PDEs based on spatial boundary communication. IET Control Theory & Applications, 2017, 11(17):3196-3200.
[1] 何志强, 陈凤娥, 彭幸春. 均值-方差准则下保险公司带内幕信息的时间一致投资-再保险策略[J]. 系统科学与数学, 2022, 42(9): 2432-2447.
[2] 刘教, 王鑫, 李红超. 持续DoS攻击下多智能体系统基于观测器的一致性研究[J]. 系统科学与数学, 2022, 42(7): 1715-1726.
[3] 邓娅, 朱伟. 具有分布式无限通信时延的多智能体系统的领导者-跟随者一致性研究:M-矩阵方法[J]. 系统科学与数学, 2022, 42(6): 1467-1477.
[4] 何志龙, 陈小昆. 具有饱和脉冲输入神经网络的局部指数同步[J]. 系统科学与数学, 2022, 42(3): 542-554.
[5] 杨娜娜, 黎锁平, 周永强. 死区输入多智能体系统的分布式迭代学习控制[J]. 系统科学与数学, 2022, 42(12): 3149-3162.
[6] 龚平, 汪坤. 异质非线性分数阶多智能体系统的预设时间二部一致性跟踪[J]. 系统科学与数学, 2022, 42(11): 2874-2885.
[7] 陈佳博, 涂俐兰, 杨永, 张青. 有向相互依存网络的事件驱动异质一致性[J]. 系统科学与数学, 2022, 42(11): 2886-2901.
[8] 刘瑛, 魏海燕, 魏翠萍. 一致性和特征向量驱动的个性化语义及其在稻米评价中的应用[J]. 系统科学与数学, 2022, 42(10): 2680-2697.
[9] 于俊燕, 贾荣波, 禹梅. 三阶多智能体系统的尺度群一致性[J]. 系统科学与数学, 2021, 41(7): 1761-1771.
[10] 赵兰浩, 纪志坚. 符号网络条件下扩散耦合多智能体系统的可控性分析[J]. 系统科学与数学, 2021, 41(6): 1455-1466.
[11] 李珂, 慕小武. 半马氏切换拓扑下随机非线性多智能体系统的$H_{\infty}$包含控制问题研究[J]. 系统科学与数学, 2021, 41(6): 1467-1480.
[12] 陈振杰, 傅勤, 郁鹏飞, 张丹. 一类四阶抛物型偏微分多智能体系统的协调控制[J]. 系统科学与数学, 2021, 41(4): 898-912.
[13] 杨鹏,杨志江. 相对表现视角下的再保险与投资策略[J]. 系统科学与数学, 2021, 41(2): 517-532.
[14] 闫晓雪, 纪志坚.  从Stackelberg-Nash均衡视角对动态社交网络系统中的意见分层建模分析[J]. 系统科学与数学, 2021, 41(11): 3029-3048.
[15] 晋守博,李耀红,魏章志.  基于大通讯时滞的多智能体系统的控制协议研究[J]. 系统科学与数学, 2020, 40(9): 1531-1538.
阅读次数
全文


摘要