钟佳岐1, 陈晓雷1, 曾诚2
钟佳岐, 陈晓雷, 曾诚. 具有执行器饱和的多智能体系统$H_\infty$边界一致性控制[J]. 系统科学与数学, 2023, 43(1): 29-43.
ZHONG Jiaqi, CHEN Xiaolei, ZENG Cheng. $H_\infty$ Boundary Consensus Control for Multi-Agent Systems with Actuator Saturation[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(1): 29-43.
ZHONG Jiaqi1, CHEN Xiaolei1, ZENG Cheng2
MR(2010)主题分类:
分享此文:
[1] Li Y, Wang C, Liang D. Truncated prediction-based distributed consensus control of linear multi agent systems with discontinuous communication and input delay. Neurocomputing, 2020, 409:217-230. [2] Rizk Y, Awad M, Tunstel E W. Cooperative heterogeneous multi-robot systems:A survey. ACM Computing Surveys, 2020, 52(2):1-31. [3] Qin J, Ma Q, Shi Y, et al. Recent advances in consensus of multi-agent systems:A brief survey. IEEE Transactions on Industrial Electronics, 2017, 64(6):4972-4983. [4] Zhang H, Gurfil P. Cooperative orbital control of multiple satellites via consensus. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5):2171-2188. [5] 张文, 马忠军, 王毅. 带未知耦合权重的领导-跟随多智能体系统的实用一致性. 自动化学报, 2018, 44(12):2300-2304. (Zhang W, Ma Z J, Wang Y. Practical consensus of leader-following multi-agent system with unknown coupling weights. Acta Automatica Sinica, 2018, 44(12):2300-2304.) [6] Yaghoubi Z, Talebi H A. Cluster consensus for nonlinear multi-agent systems. Journal of Intelligent & Robotic Systems, 2020, 100(3-4):1069-1084. [7] Liu G, Pan Y, Lam H, et al. Event-triggered fuzzy adaptive quantized control for nonlinear multi-agent systems in nonaffine pure-feedback form. Fuzzy Sets and Systems, 2021, 416:27-46. [8] Li X, Yu Z, Li Z, et al. Group consensus via pinning control for a class of heterogeneous multiagent systems with input constraints. Information Sciences, 2021, 542:247-262. [9] Zhang H, Cai Y, Wang Y, et al. Adaptive bipartite event-triggered output consensus of heterogeneous linear multiagent systems under fixed and switching topologies. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11):4816-4830. [10] Ao Y, Jia Y. Robust H2/H∞ group consensus control for linear clusters over signed digraphs. Journal of the Franklin Institute, 2020, 357(12):7556-7580. [11] Yang C, Huang T, Zhang A, et al. Output consensus of multiagent systems based on PDEs with input constraint:A boundary control approach. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(1):370-377. [12] Freudenthaler G, Meurer T. PDE-based multi-agent formation control using flatness and backstepping:Analysis, design and robot experiments. Automatica, 2020, 115:108897. [13] Wang J, Wu H, Huang T, et al. Pinning control strategies for synchronization of linearly coupled neural networks with reaction-diffusion terms. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4):749-761. [14] Tang S, Qi J, Zhang J. Formation tracking control for multi-agent systems:A wave-equation based approach. International Journal of Control, Automation and Systems, 2017, 15(6):2704-2713. [15] Lan Y, Xia J, Xia Y, et al. Iterative learning consensus control for multi-agent systems with fractional order distributed parameter models. International Journal of Control, Automation and Systems, 2019, 17(11):2839-2849. [16] 陈振杰, 傅勤, 郁鹏飞, 等. 一类四阶偏微分多智能体系统的一致性控制. 应用数学, 2021, 34(2):448-456. (Chen Z, Fu Q, Yu P F, et al. Consensus control for a class of fourth order partial differential multi-agent systems. Mathematica Applicata, 2021, 34(2):448-456.) [17] Foderaro G, Ferrari S, Wettergren T A. Distributed optimal control for multi-agent trajectory optimization. Automatica, 2014, 50(1):149-154. [18] Mylvaganam T, Sassano M, Astolfi A. A differential game approach to multi-agent collision avoidance. IEEE Transactions on Automatic Control, 2017, 62(8):4229-4235. [19] Yang C, Cao J, Huang T, et al. Guaranteed cost boundary control for cluster synchronization of complex spatio-temporal dynamical networks with community structure. Science China Information Sciences, 2018, 61(5):052203. [20] Qi J, Zhang J, Ding Y. Wave equation-based time-varying formation control of multiagent systems. IEEE Transactions on Control Systems Technology, 2018, 26(5):1578-1591. [21] Xu C, Dong Y, Ren Z, et al. Sensor deployment for pipeline leakage detection via optimal boundary control strategies. Journal of Industrial and Management Optimization, 2015, 11(1):199-216. [22] Yamaguchi K, Endo T, Matsuno F. Formation control of multi-agent system based on higher order partial differential equations. IEEE Transactions on Control Systems Technology, 2021, 30(2):570-582. [23] Zong X, Zheng J, Wei J, et al. Synchronizing controller design for networked heat equations with boundary structured time-varying perturbations and general disturbances. Journal of Process Control, 2021, 107:94-102. [24] 郜晨, 何潇. 执行器饱和的多智能体一致性控制. 航空学报, 2020, 41(S1):72376. (Gao C, He X. Consensus control for multi-agent systems subject to actuator saturation, Acta Aeronautica Sinica, 2020, 41(S1):723760.) [25] Yang C, Li X, Qiu J. Output synchronization control with input constraint of complex networks with reaction-diffusion terms. Neural Computing and Applications, 2018, 30(11):3295-3302. [26] Yuan C, Ilbeigi S, Zeng W. H∞ output containment control of heterogeneous multi-agent systems via distributed dynamic output feedback. Journal of the Franklin Institute, 2018, 355(12):5058-5081. [27] Tan L N. Distributed H∞ optimal tracking control for strict-feedback nonlinear large-scale systems with disturbances and saturating actuators. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(11):4719-4731. [28] Wu H, Wang J, Li H. Design of distributed H∞ fuzzy controllers with constraint for nonlinear hyperbolic PDE systems. Automatica, 2012, 48(10):2535-2543. [29] Zhu H, Wu H, Wang J. H∞ disturbance attenuation for nonlinear coupled parabolic PDE-ODE systems via fuzzy-model-based control approach. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(8):1814-1825. [30] Yamaguchi K, Endo T, Matsuno F. Formation control of multiagent system based on higher order partial differential equations. IEEE Transactions on Control Systems Technology, 2022, 30(2):570-582. [31] Terushkin M, Fridman E. Network-based deployment of nonlinear multi agents over open curves:A PDE approach. Automatica, 2021, 129:109697. [32] Wang J, Wu H, Huang T, et al. Pinning control for synchronization of coupled reaction-diffusion neural networks with directed topologies. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(8):1109-1120. [33] Fu Q, Du L, Xu G, et al. Consensus control for multi-agent systems with distributed parameter models. Neurocomputing, 2018, 308:58-64. [34] Pilloni A, Pisano A, Orlov Y, et al. Consensus-based control for a network of diffusion PDEs with boundary local interaction. IEEE Transactions on Automatic Control, 2016, 61(9):2708-2713. [35] Yang C, He H, Huang T, et al. Consensus for non-linear multi-agent systems modelled by PDEs based on spatial boundary communication. IET Control Theory & Applications, 2017, 11(17):3196-3200. |
[1] | 何志强, 陈凤娥, 彭幸春. 均值-方差准则下保险公司带内幕信息的时间一致投资-再保险策略[J]. 系统科学与数学, 2022, 42(9): 2432-2447. |
[2] | 刘教, 王鑫, 李红超. 持续DoS攻击下多智能体系统基于观测器的一致性研究[J]. 系统科学与数学, 2022, 42(7): 1715-1726. |
[3] | 邓娅, 朱伟. 具有分布式无限通信时延的多智能体系统的领导者-跟随者一致性研究:M-矩阵方法[J]. 系统科学与数学, 2022, 42(6): 1467-1477. |
[4] | 何志龙, 陈小昆. 具有饱和脉冲输入神经网络的局部指数同步[J]. 系统科学与数学, 2022, 42(3): 542-554. |
[5] | 杨娜娜, 黎锁平, 周永强. 死区输入多智能体系统的分布式迭代学习控制[J]. 系统科学与数学, 2022, 42(12): 3149-3162. |
[6] | 龚平, 汪坤. 异质非线性分数阶多智能体系统的预设时间二部一致性跟踪[J]. 系统科学与数学, 2022, 42(11): 2874-2885. |
[7] | 陈佳博, 涂俐兰, 杨永, 张青. 有向相互依存网络的事件驱动异质一致性[J]. 系统科学与数学, 2022, 42(11): 2886-2901. |
[8] | 刘瑛, 魏海燕, 魏翠萍. 一致性和特征向量驱动的个性化语义及其在稻米评价中的应用[J]. 系统科学与数学, 2022, 42(10): 2680-2697. |
[9] | 于俊燕, 贾荣波, 禹梅. 三阶多智能体系统的尺度群一致性[J]. 系统科学与数学, 2021, 41(7): 1761-1771. |
[10] | 赵兰浩, 纪志坚. 符号网络条件下扩散耦合多智能体系统的可控性分析[J]. 系统科学与数学, 2021, 41(6): 1455-1466. |
[11] | 李珂, 慕小武. 半马氏切换拓扑下随机非线性多智能体系统的$H_{\infty}$包含控制问题研究[J]. 系统科学与数学, 2021, 41(6): 1467-1480. |
[12] | 陈振杰, 傅勤, 郁鹏飞, 张丹. 一类四阶抛物型偏微分多智能体系统的协调控制[J]. 系统科学与数学, 2021, 41(4): 898-912. |
[13] | 杨鹏,杨志江. 相对表现视角下的再保险与投资策略[J]. 系统科学与数学, 2021, 41(2): 517-532. |
[14] | 闫晓雪, 纪志坚. 从Stackelberg-Nash均衡视角对动态社交网络系统中的意见分层建模分析[J]. 系统科学与数学, 2021, 41(11): 3029-3048. |
[15] | 晋守博,李耀红,魏章志. 基于大通讯时滞的多智能体系统的控制协议研究[J]. 系统科学与数学, 2020, 40(9): 1531-1538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||