李博,孟志青,朱爱花
李博,孟志青,朱爱花. 时态支持向量机模型在股票操纵模式发现上的研究[J]. 系统科学与数学, 2023, 43(2): 356-378.
LI Bo, MENG Zhiqing, ZHU Aihua. Research on Temporal Support Vector Machine Model in the Discovery of Stock Manipulation Patterns[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(2): 356-378.
LI Bo, MENG Zhiqing, ZHU Aihua
MR(2010)主题分类:
分享此文:
[1] Eppen G D. Effect of Warehouse Centralization on Excepted Costs in a Multi-location Newsboy Problem. Management Science, 1979, 25(5):498-501. [2] Chang P L, Lin C T. On the Effect of Centralization on Expected Costs in a Multi-location Newsboy Problem. Journal of the Operational Research Society, 1991, 42(11):1025-1030. [3] Chen M S, Lin C T. Effects of Centralization on Expected Costs in a Multi-location Newsboy Problem. Journal of the Operational Research Society, 1989, 40(6):597-602. [4] Cherikh M. On the Effect of Centralization on Expected Profits in a Multi-location Newsboy Problem. Journal of The Operational Research Society, 2000, 51(6):755-761. [5] Kevin W Z. Risk-pooling Over Demand Uncertainty in the Presence of Product Modularity. International Journal of Production Economics, 1999, 62(1):75-85. [6] Cai X, Du D.On the Effects of Risk Pooling in Supply Chain Management:Review and Extensions. Acta Mathematics Application Sinence, English Series, 2009, 25(4):709-722. [7] Netessin S, Rudi N. Centralized and Competitive Inventory Models with Demand Substitution. Operations Research, 2003, 51(2):329-335. [8] Schmitt A J, Snyder L V, Shen Z J M. Centralization Versus Decentralization:Risk Pooling, Risk Diversification, and Supply Chain Disruptions] [R]. Bethlehem:Working Paper, PC Rossin College of Engineering and Applied Sciences, Lehigh University, PA, 2011. [9] Kemohliogluziya E, Bartholdi J. Centralizing Inventory in Supply Chains by Using Shapley Value to Allocate the Profits. Manufacturing Service Operations Management, 2011, 13(2):146-162. [10] Swinney R. Inventory pooling with strategic consumers:Operational and behavioral] [M]. Stanford University Stanford CA Working Paper, 2012 [11] Yang Y, Chen Y, Zhou Y. Coordinating Inventory Control and Pricing Strategies Under Batch Ordering. Operations Research, 2014, 62(1):25-37. [12] Zahra H, Babak A. The inventory centralization impacts on sustainability of the blood supply chain. Computers and Operations Research] 2018, 89:206-212. [13] Shivangi V. T. Comparative study of Bullwhip effect in Centralized and Decentralized supply chain of an FMCG industry. Journal of Industrial Mechanics, 2018, 1(3):1-12. [14] Christoph W, Achim K, Frank S, Leena S, Stefan V. A two-stage stochastic programming approach for identifying optimal postponement strategies in supply chains with uncertain demand. Omega, 2018, 83:123-138. [15] Rockafellar R T, Uryasev S. Optimization of Conditional Value-at-Risk. The Journal of Risk, 2000, 2:21-41. [16] Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 2002, 26:1443-1471. [17] Alexander G J, Baptista A M. A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model. Management Science, 2004, 50:1261-1273. [18] Delage E, Ye Y. Distributional robust optimization under moment uncertainty with application to data-driven problems. Operations Research, 2010, 58(3):595-612. [19] Huang D S, Zhu S S, Fabozzi F J, Fukushima M. Portfolio selection under distributional uncertainty:A relative robust CVaR approach. European Journal of Operational Research, 2010, 203:185-194. [20] Zhu S S, Li D, Wang S Y. Robust Portfolio Selection under Downside Risk Measures. Quantitative Finance, 2009, 9:869-885. [21] Zhu S S, Fukushima M. Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management, Operations Research, 2009, 57(1):1155-1168. [22] Takeda A, Kanamori T, A robust approach based on conditional value-at-risk measure to statistical learning problems. European Journal of Operational Research, 2009, 198(1):287-296. [23] Gotoh J and Takano Y. Newsvendor solutions via conditional value-at-risk minimization. European Journal of Operational Research, 2007, 179(1):80-96. [24] Zhou Y J, Chen X H, Wang Z R. Optimal ordering quantities for multi-products with stochastic demand:Return-CVaR model. International Journal of Production Economics, 2008, 112(1):782-795. [25] Qiu R Z, Shang J, Huang X Y. Robust inventory decision under distribution uncertainty:A CVaR-based optimization approach. International Journal of Production Economics, 2014, 153(1):13-23. [26] Sion M. On general minimax theorems. Pacific J. Mathematics, 1958, 8(1):171-176. [27] Sawragi Y, Nakayama H, Tanino T. Theory of multiobjective optimization. Academic Press, New York, 1985. [28] Meng Z Q, Dang C Y, Jiang M, Zhou G G, Shen R, Xu X S, Theory and Algorithm of Nonlinear Penalty Function. Science Press, Beijing, 2016. [29] Xu L Y, Meng Z Q, Zhou G G, Mu Y Z, Zheng M C. Study on Single Cycle Production Allocation and Supply Strategy for DCEs Based on the CVaR Criterion. Discrete Dynamics in Nature and Society. 2018, 2018:1-15 [30] 徐蕾艳, 孟志青. 直营连锁企业生产分配供应单周期模型研究. 系统科学与数学, 2019, 39(6):904-917. (Xu L Y, Meng Z Q. Research on single cycle model of production allocation and supply for direct chain enterprises. Systems Science and Mathematics, 2019, 39(6):904-917.) [31] 徐蕾艳, 孟志青. 基于凸概度分布簇下WCVaR模型的有限逼近性. 数学实践与认识, 2019, 49(4):245-251. (Xu L Y, Meng Z Q. Finite approximation of the worst conditional value-at-risk model based on convex probability distribution cluster. Mathematical in Practice and Theory, 2019, 49(4):245-251.) [32] 徐蕾艳, 孟志青. 多损失WCVaR模型的等价性定理, 运筹学学报. 2018, 22(4):45-56. (Xu L Y, Meng Z Q. General equivalence problem of multi-loss WCVaR, Operations Research Transactions. 2018, 22(4):45-56.) |
[1] | 王冠鹏, 秦双燕, 崔恒建. 员工流失的影响因素分析与预测[J]. 系统科学与数学, 2022, 42(6): 1616-1632. |
[2] | 胡雪梅, 李佳丽, 蒋慧凤. 机器学习方法研究肝癌预测问题[J]. 系统科学与数学, 2022, 42(2): 417-433. |
[3] | 张婷婷, 王沫然, 魏得胜, 刘志峰. 季节调整FWA-SVR模型及其在旅游经济预测中的应用[J]. 系统科学与数学, 2021, 41(6): 1572-1584. |
[4] | 胡雪梅, 蒋慧凤. 具有技术指标的逻辑回归模型预测谷歌股票的涨跌趋势[J]. 系统科学与数学, 2021, 41(3): 802-823. |
[5] | 李萍,倪志伟,朱旭辉,宋娟. 基于改进萤火虫算法的SVR空气污染物浓度预测模型[J]. 系统科学与数学, 2020, 40(6): 1020-1036. |
[6] | 韩璐,苏治,刘志东. 金融市场的协动预测模型: DWT-SVM方法[J]. 系统科学与数学, 2020, 40(12): 2342-2356. |
[7] | 于静,韩鲁青. 一种改进的求解支持向量机模型的坐标梯度下降算法[J]. 系统科学与数学, 2018, 38(5): 583-590. |
[8] | 张文,崔杨波,姜祎盼. 基于SVM$^{K\text{-}{\rm Means}}$的非均衡P2P网贷平台风险预测研究[J]. 系统科学与数学, 2018, 38(3): 364-378. |
[9] | 李萍,倪志伟,朱旭辉,伍章俊. 基于分形流形学习的支持向量机空气污染指数预测模型[J]. 系统科学与数学, 2018, 38(11): 1296-1306. |
[10] | 唐振鹏,黄双双,陈尾虹. 基于支持向量机的银行系统重要性评估研究[J]. 系统科学与数学, 2018, 38(1): 57-77. |
[11] | 朱旭辉,倪志伟,倪丽萍,程美英,李敬明,金飞飞. 基于相异度的SVM选择性集成雾霾天气预测方法[J]. 系统科学与数学, 2017, 37(6): 1480-1493. |
[12] | 王勇,董恒新. 大数据背景下中国季度失业率的预测研究------基于网络搜索数据的分析[J]. 系统科学与数学, 2017, 37(2): 460-472. |
[13] | 张燕,张晨光,张夏欢. 平衡化图半监督学习方法[J]. 系统科学与数学, 2016, 36(8): 1107-1118. |
[14] | 朱旭辉,倪志伟,程美英. 基于人工鱼群和分形学习的雾霾天气预报方法[J]. 系统科学与数学, 2016, 36(11): 1887-1901. |
[15] | 张少白,曾又,刘友谊. 基于DIVA模型的脑电信号识别方法[J]. 系统科学与数学, 2015, 35(5): 489-498. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||