李志强1, 李文鸽2, 崔春生2
李志强,李文鸽,崔春生. 区间合作博弈Shapley值的矩阵计算方法[J]. 系统科学与数学, 2023, 43(2): 342-355.
LI Zhiqiang, LI Wenge, CUI Chunsheng. Matrix Approach to Calculation of Shapley Value for Interval Cooperative Games[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(2): 342-355.
LI Zhiqiang1, LI Wenge2, CUI Chunsheng2
MR(2010)主题分类:
分享此文:
[1] Shapley L S. A Value for n-Person Games. Princeton:Princeton University Press, 1953. [2] Branzei R, Dimitrov D, Tijs S. 合作博弈理论模型. 北京:科学出版社, 2011. (Branzei R, Dimitrov D, Tijs S. Models in Cooperative Game Theory. Beijing:Science Press, 2011.) [3] Jean D, Hans H, Hans P. The selectope for cooperative games. International Journal of Game Theory, 2000, 29(1):23-38. [4] Gillies D B. Solutions to general non-zero-sum games. Eds. by Tucker A W & Luce R D, Contributions to the Theory of Games IV, 47-85. Princeton N J:Princeton University Press, 1959. [5] 胡石清. 社会合作中利益如何分配?——超越夏普利值的合作博弈"宗系解". 管理世界, 2018, 34(6):83-93. (Hu S Q. How to Distribute the benefits in social cooperation? "The Clique Solution" of cooperative game surpassing Shapley value. Management World, 2018, 34(6):83-93.) [6] Yuan J, Peter B, Pieter R. The consensus value: A new solution concept for cooperative games. Social Choice and Welfare, 2007, 28(4):685-703. [7] Cheng D Z, Xu T T. Application of STP to cooperative games. Proceedings of 10th IEEE International Conference on Control and Automation (ICCA), 2013, 1680-1685. [8] Wang Y, Alsaadi F E, Liu Z, et al. Matrix expression of Shapley value in graphical cooperative games. Mathematical Problems in Engineering, 2020, Article ID 2045654. [9] Li H T, Wang S L, Liu A X, et al. Simplification of Shapley value for cooperative games via minimum carrier. Control Theory & Applications, 2021, 19(2):157-169. [10] Branzei R, Dimitrov D, Tijs S. Shapley-like values for interval bankruptcy games. Economics Bulletin, 2003, 3(8):1-8. [11] Yager R R, Kreinovich V. Fair division under interval uncertainty. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2000, 8(5):611-618. [12] Palanci O, Alparslan Gök S Z A, Olgun M O, et al. Transportation interval situations and related games. OR Spectrum, 2016, 38(1):119-136. [13] 高作峰, 邹正兴, 马栋, 等. 区间合作对策在增广系统上的区间Shapley值. 模糊系统与数学, 2013, 27(4):148-156. (Gao Z F, Zou Z X, Ma D. Interval Shapley value for cooperative interval game on augmenting systems. Fuzzy System and Mathematics, 2013, 27(4):148-156.) [14] Han W B, Sun H, Xu G J. A new approach of cooperative interval games:The interval core and Shapley value revisited. Operations Research Letters, 2012, 40(6):462-468. [15] Moore R E. Methods and Applications of Interval Analysis. Philadelphia:Society for Industrial and Applied Mathematics, 1979. [16] 于晓辉, 周鸿, 邹正兴, 等. 基于区间与模糊Shapley值的合作收益分配策略. 运筹与管理, 2018, 27(8):149-154. (Yu X H, Zhou H, Zou Z X. Allocation scheme based on interval and fuzzy Shapley value. Operations Research and Management Science, 2018, 27(8):149-154.) [17] Bilbao J M, Ordóñez M. Axiomatizations of the Shapley value for games on augmenting systems. European Journal of Operational Research, 2009, 196(3):1008-1014. [18] Palanci O, Alparalan Gök S Z, Ergün S, et al. Cooperative grey games and the grey Shapley value. Optimization, 2015, 64(8):1657-1668. [19] Alparslan Gök S Z, Miquel S, Tijs S H. Cooperation under interval uncertainty. Mathematical Methods of Operations Research, 2009, 69(1):99-109. [20] Fei W, Li D F, Ye Y F. An approach to computing interval-valued discounted Shapley values for a class of cooperative games under interval data. International Journal of General Systems, 2018, 47(8):794-808. [21]Brink R, Funaki Y. Implementation and axiomatization of discounted Shapley values. Social Choice Welfare, 2015, 45:329-344. [22]Brink R. Null or nullifying players:The difference between the Shapley value and equal division solutions. Journal of Economic Theory, 2007, 136(1):767-775. [23] Zhang X, Cheng D Z. Profile-dynamic based fictitious play. Science China Information Sciences, 2021, 64(6):169-202. [24] Wang Y H, Cheng D Z. On coset weighted potential game. Journal of the Franklin Institute, 2020, 357(9):5523-5540. [25] Li C X, He F H, Liu T, et al. Symmetry-based decomposition of finite games. Science China Information Sciences, 2019, 62(1):1-13. [26] Cheng D Z, W Y H, Zhao G D, et al. A comprehensive survey on STP approach to finite games. Journal of Systems Science and Complexity, 2021, 34(5):1666-1680. [27] Cheng D Z, Qi H S, Zhao Y. An Introduction to Semi-Tensor Product of Matrices and Its Applications. Singapore:World Scientific, 2012. [28] Cheng D Z, Qi H S. Semi-Tensor Product of Matrix-Theory and Applications. Beijin:Science Press, 2007. [29] Li D F. Models and Methods for Interval-Valued Cooperative Games in Economic Management. Switzerland:Springer International Publishing, 2016. [30] Liu Y, Fang Z G, Liu S F. Grey Shapley model and its application in cooperative game. Journal of Grey System, 2011, 23(2):183-192. [31] 王英, 鲍新中. 基于夏普利值的第三方物流集成供应成本分摊研究. 经济问题探索, 2014, 35(3):68-72. (Wang Y, Bao X Z. Research on cost allocation of integrated supply of third party logistics based on Shapley value. Inquiry into Economic Issues, 2014, 35(3):68-72.) [32] 陈剑, 刘运辉. 数智化使能运营管理变革:从供应链到供应链生态系统. 管理世界, 2021, 37(11):227-240. (Chen J, Liu Y H. Operations management innovation enabled by digitalization and intellectualization:From Supply chain to supply chain ecosystem. Journal of Management World, 2021, 37(11):227-240.) |
[1] | 沈宇桐, 徐勇. 概率布尔网络的牵制鲁棒镇定[J]. 系统科学与数学, 2022, 42(6): 1454-1466. |
[2] | 延卫军, 张利军, 毕冬瑶. A*算法的代数表示[J]. 系统科学与数学, 2022, 42(6): 1478-1489. |
[3] | 陈昊东, 李露露, 胡博森. 基于事件触发的延时概率布尔网络的输出跟踪[J]. 系统科学与数学, 2022, 42(10): 2847-2858. |
[4] | 梁开荣,李登峰,余高峰. 基于两型博弈的双边链路形成策略优化研究[J]. 系统科学与数学, 2020, 40(9): 1550-1563. |
[5] | 胡勋锋,李登峰. 带层次结构效用可转移合作对策的collective值[J]. 系统科学与数学, 2017, 37(1): 172-185. |
[6] | 贾光钰,冯俊娥. 三种单节点摄动对混合值逻辑网络极限集的影响[J]. 系统科学与数学, 2016, 36(3): 426-436. |
[7] | 李泉林,杨碧蕊,鄂成国,段灿. 大型并行服务系统的利润分配机制设计[J]. 系统科学与数学, 2016, 36(2): 169-. |
[8] | 胡勋峰,李登峰. 带层次结构效用可转移合作对策的Shapley值及其简化计算方法[J]. 系统科学与数学, 2016, 36(11): 1913-1921. |
[9] | 李泉林,黄亚静,鄂成国. 农超对接下农业合作社联盟的排队网络型合作博弈研究[J]. 系统科学与数学, 2016, 36(11): 1972-1985. |
[10] | 程代展,刘挺,王元华. 博弈论中的矩阵方法[J]. 系统科学与数学, 2014, 34(11): 1291-1305. |
[11] | 王莹莹,梅生伟,刘峰. 混合电力系统合作博弈规划的分配策略研究[J]. 系统科学与数学, 2012, 32(4): 418-428. |
[12] | 程代展,齐洪胜. 矩阵半张量积的基本原理与适用领域[J]. 系统科学与数学, 2012, 32(12): 1488-1496. |
[13] | 程代展,赵寅,徐听听. 演化博弈与逻辑动态系统的优化控制[J]. 系统科学与数学, 2012, 32(10): 1226-1238. |
[14] | 舒彤, 刘纯霞, 陈收, 张喜征. 考虑中断情况的三级供应链利润分配优化策略[J]. 系统科学与数学, 2011, 31(10): 1197-1208. |
[15] | 苏春华;刘思峰. 具有时变区间参数的不确定随机线性系统的均方鲁棒稳定性[J]. 系统科学与数学, 2010, 30(3): 289-295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||