• • 下一篇
黎书杰1, 智亚丽1,2, 孙承宇1, 孙先涛1
黎书杰,智亚丽,孙承宇,孙先涛. 基于状态分解的离散奇异时滞系统的容许性和$H_{\infty}$性能分析[J]. 系统科学与数学, 2023, 43(2): 271-280.
LI Shujie, ZHI Yali, SUN Chengyu, SUN Xiantao. Admissibility and $H_{\infty}$ Performance Analysis of Discrete-Time Singular Systems with Time Delays Based on the State Decomposition[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(2): 271-280.
LI Shujie1, ZHI Yali1,2, SUN Chengyu1, SUN Xiantao1
MR(2010)主题分类:
分享此文:
[1] Xu S, Dooren P V, Stefan R, et al. Robust stability and stabilization for singular delay systems with state delay and parameter uncertainty. IEEE Trans. Autom. Control, 2002, 47(7): 1122- 1128. [2] Fridman E. Stability of linear descriptor systems with delay: A Lyapunov-based approach. J. Math. Analys. Appl., 2002, 273(1): 24-44. [3] He Y, Wang Q G, Xie L, et al. Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans. Autom. Control, 2007, 52(2): 293-299. [4] Liu Z Y, Lin C, Chen B. A neutral system approach to stability of singular time-delay systems. J. Franklin Inst., 2014, 351(10): 4939-4948. [5] Liu G. New results on stability analysis of singular time-delay systems. Int. J. Syst. Sci., 2017, 48(7): 1395-1403. [6] Li W, He Z, Sun W, et al. Admissibility analysis for Takagi-Sugeno fuzzy singular systems with time delay. Neurocomputing, 2016, 205: 336-340. [7] Liu Z Y, Lin C, Chen B. Admissibility analysis for linear singular systems with time-varying delays via neutral system approach. ISA Trans., 2016, 61: 141-146. [8] Zhi Y L, He Y, Shen J, et al. New stability criteria of singular systems with time-varying delay via free-matrix-based integral inequality. Int. J. Syst. Sci., 2018, 49(5): 1032-1039. [9] Luu T H, Nam P T. Stability analysis of singular time-delay systems using the auxiliary functionbased double integral inequalities. Int. J. Syst. Sci., 2021, 52(9): 1868-1881. [10] Zhi Y L, He Y, Wu M, et al. Dissipativity analysis of singular time-delay systems via state decomposition method. IEEE Trans. Syst., Man, Cyber. Syst., 2020, 50: 3936-3942. [11] Zhi Y L, He Y, Wu M, et al. New results on dissipativity analysis of singular systems with time-varying delay. Inf. Sci., 2019, 479: 292-300. [12] Tian Y, Wang Z. Exponential admissibility analysis for singular systems with time-varying delay based on a parameter-dependent reciprocally convex inequality, Int. J. Syst. Sci., 2020, 51(16): 3199-3212. [13] Li Y, He Y. New insight into admissibility analysis for singular systems with time-varying delays, Int. J. Syst. Sci., 2020, 52(13): 2752-2762. [14] Chen W, Gao F, She J, et al. Further results on delay-dependent stability for neutral singular systems via state decomposition method. Chaos, Soli. Frac., 2020, 141: 110408. [15] Zhao Y, Ma Y. Asynchronous H∞ control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach. Appl. Math. Comput., 2021, 407(17): 126304. [16] Du Z P, Zhang Q L, Liu L L. New delay-dependent robust stability of discrete singular systems with time-varying delay. Asian J. Control, 2011, 13(1): 136-147. [17] Feng Z G, Lam J, Gao H J. Delay-dependent robust H∞ controller synthesis for discrete singular delay systems. Int. J. Robust Non. Control, 2011, 21(16): 1880-1902. [18] Zhang X, Zhu H Y. Robust stability and stabilization criteria for discrete singular time-delay LPV systems. Asian J. Control, 2012, 14(4): 1084-1094. [19] Shao Y, Liu X, Sun X, et al. A delay decomposition approach to H∞ admissibility for discretetime singular delay systems. Inf. Sci., 2014, 279: 893-905. [20] Wan X, Wu M, He Y. Stability analysis for discrete time-delay systems based on new finite-sum inequalities. Inf. Sci., 2016, 369: 119-127. [21] Boyd S, Ghaoui L E, Feron E, et al. Linear Matrix Inequality in System and Control. Philadelphia: SIAM Studies in Applied Mathematics, 1994. [22] Feng Z, Zhang H, Lam H. New results on dissipative control for a class of singular Takagi-Sugeno fuzzy systems with time delay. IEEE Trans. Fuzzy Syst., 2022, 30(7): 2466-2475. |
[1] | 周在莹. 矩阵损失函数下回归系数矩阵的非齐次线性估计的可容许性[J]. 系统科学与数学, 2010, 30(12): 1597-1605. |
[2] | 刘刚;张尚立. 一般增长曲线模型回归系数线性估计的可容许性[J]. 系统科学与数学, 2009, 29(3): 315-322. |
[3] | 王志忠;康新梅;刘锋. 误差方差的非齐次估计的可容许的充要条件[J]. 系统科学与数学, 2006, 26(6): 709-713. |
[4] | 程正东;陈桂景. 多元线性模型中的有偏估计[J]. 系统科学与数学, 2004, 24(4): 504-512. |
[5] | 黄言军;赖民;宋立新. Pitman准则下指数分布刻度参数幂的分组定数截尾估计[J]. 系统科学与数学, 2000, 20(1): 24-030. |
[6] | 魏凤荣. 具有特殊协方差结构的SURE模型中参数估计的若干结果[J]. 系统科学与数学, 1999, 19(1): 86-094. |
[7] | 林举干;孙孝前. 二次约束下多指标线性模型回归系数线性估计的可容许性[J]. 系统科学与数学, 1997, 17(1): 66-072. |
[8] | 鹿长余;沙秋英;李维新. 方差分量的非负二次同时估计的可容许性[J]. 系统科学与数学, 1996, 16(4): 361-366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||