• • 上一篇    

基于回归调整CUSUM控制图的流感监测

蒋俐弘1, 岳进1, 文洪玲1, 刘浏1,2   

  1. 1. 四川师范大学可视化计算与虚拟现实四川省重点实验室&数学科学学院, 成都 610066;
    2. 成都理工大学数理学院, 成都 610059
  • 收稿日期:2022-03-09 修回日期:2022-06-20 出版日期:2023-02-25 发布日期:2023-03-16
  • 通讯作者: 刘浏,Email:liuliums@cdut.edu.cn
  • 基金资助:
    国家自然科学基金(12075162),可视化计算与虚拟现实四川省重点实验室课题(J2010N09)资助课题.

蒋俐弘,岳进,文洪玲,刘浏. 基于回归调整CUSUM控制图的流感监测[J]. 系统科学与数学, 2023, 43(2): 531-542.

JIANG Lihong, YUE Jin, WEN Hongling, LIU Liu. Influenza Surveillance Based on CUSUM Control Chart After Regression Adjustment[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(2): 531-542.

Influenza Surveillance Based on CUSUM Control Chart After Regression Adjustment

JIANG Lihong1, YUE Jin1, WEN Hongling1, LIU Liu1,2   

  1. 1. VCVR Province Key Lab and College of Mathematical Sciences, Sichuan Normal University, Chengdu 610066;
    2. School of Mathematics, Chengdu University of Technology, Chengdu 610059
  • Received:2022-03-09 Revised:2022-06-20 Online:2023-02-25 Published:2023-03-16
流感事件的不可控将对公众健康构成威胁,控制图可以对流感进行监控并对流感爆发进行预警.在实际生活中,每天的流感人数不是同分布的,会受到如温度和湿度等相关因素影响,忽视这些因素可能会使控制图出现误报从而影响疾控部门的决策.考虑到这些因素,文章基于风险调整零膨胀泊松CUSUM控制图提出了一种针对于正常泊松分布的回归调整CUSUM控制图.并且通过蒙特卡洛随机模拟方法算出控制限,分析了文章提出的回归调整CUSUM控制图失控状态下的性能,并与传统CUSUM控制图进行了比较,模拟结果显示回归调整CUSUM控制图明显提高了对漂移的监测效率.最后基于文章提出的方法对香港一家医院的流感人数进行监测,并对流感爆发进行了准确的预警.
Uncontrolled influenza events pose a threat to public health, and control charts can monitor and warn of outbreaks. In real life, the number of flu cases per day is not evenly distributed and is affected by factors such as temperature and humidity. Ignoring these factors may lead to false positives in the control charts and affect the decision-making of the CDC. Considering these factors, this paper presents a regression adjusted CUSUM control chart based on risk-adjusted zero-inflation CUSUM control chart for standard poisson distribution. The control limits are calculated by Monte Carlo stochastic simulation, and the performance of the control chart is analyzed when the CUSUM control chart is out of control, compared with the traditional CUSUM control chart, the simulation results show that the CUSUM control chart adjusted by regression can improve the efficiency of drift monitoring. Finally, based on the method proposed in this paper, a hospital in Hong Kong to monitor the influenza, and the outbreak of influenza for an accurate warning.

MR(2010)主题分类: 

()
[1] 仲建兰, 江天, 赵宏伟. 基于平方秩和的变点控制图的生产提前期控制研究. 系统科学与数学, 2021, 41(4):1079-1090. (Zhong J L, Jiang T, Zhao H W. Research on production lead time control of change-point control chart based on square rank sum. Journal of Systems Science and Mathematical Sciences, 2021, 41(4):1079-1090.)
[2] Rolka H, Burkom H, Cooper G F, et al. Issues in applied statistics for public health bioterrorism surveillance using multiple data streams:Research needs. Stat. Med., 2007, 26(8):1834-1856.
[3] 王兆军, 曾渊沧, 郝刚. 均匀设计抽样在股市投资决策上的应用. 应用数学学报, 2001, 24(2):195-203. (Wang Z J, Zeng Y C, Hao G. Application of uniform design sampling in stock market investment decision. Acta Mathematicae Applicatae Sinica, 2001, 24(2):195-203.)
[4] Woodall W H. The use of control charts in health-care and public-health surveillance. J. Qual. Technol., 2006, 38(2):89-104.
[5] 王芝珺, 雷骏峰, 吴纯杰. 基于对数似然比的多元加权,Poisson CUSUM控制图研究及应用. 系统科学与数学, 2021, 41(3):837-853. (Wang Z J, Lei J F, Wu C J. Weighted multivariate Poisson CUSUM control chart based on log-likelihood ratio. Journal of Systems Science and Mathematical Sciences, 2021, 41(3):837-853.)
[6] Vincent A, Awada L, Brown I, et al. Review of influenza A virus in swine worldwide:A call for increased surveillance and research. Zoonoses Public Health, 2014, 61(1):4-17.
[7] Steiner S H, Cook R J, Farewell V T, et al. Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostat., 2000, 1(4):441-452.
[8] Cook D A, Steiner S H, Cook R J, et al. Monitoring the evolutionary process of quality:Risk-adjusted charting to track outcomes in intensive care. Crit. Care Med., 2003, 31(6):1676-1682.
[9] Grigg O A, Farewell V T, Spiegelhalter D J. Use of risk-adjusted CUSUM and RSPRT charts for monitoring in medical contexts. Stat. Methods Med. Res., 2003, 12(2):147-170.
[10] Grigg O A, Farewell V T. A risk-adjusted sets method for monitoring adverse medical outcomes. Stat. Med., 2004, 23(10):1593-1602.
[11] Grigg O, Farewell V. An overview of risk-adjusted charts. J. R. Stat. Soc. A, 2004, 167(3):523-539.
[12] Jiang W, Shu L, Tsui K L. Weighted CUSUM control charts for monitoring Poisson processes with varying sample sizes. J. Qual. Technol., 2011, 43(4):346-362.
[13] Yue J, Lai X, Liu L, et al. A new VLAD-based control chart for detecting surgical outcomes. Stat. Med., 2017, 36(28):4540-4547.
[14] Aly A A, Saleh N A, Mahmoud M A. An adaptive EWMA control chart for monitoring zero-infated Poisson processes. Commun. Stat. Simul. Comput., 2019, 1-14.
[15] Alevizakos V, Koukouvinos C. A generally weighted moving average control chart for zero-infated Poisson processes. Qual. Reliab. Eng. Int., 2020, 36(2):675-704.
[16] Tan Y Y, Lai X, Wang J Y, et al. Risk-adjusted zero-inflated Poisson CUSUM charts for monitoring influenza surveillance data. BMC Med. Inf. Decis. Making, 2021, 21(SUPPL 2).
[17] 王兆军, 邹长亮, 李忠华. 统计质量控制图理论与方法. 北京:科学出版社, 2013. (Wang Z J, Zou C L, Li Z H. Theory and Method of Statistical Quality Control Chart. Beijing:Science Press, 2013.)
[18] Page E S. Continuous inspection schemes. Biometrika, 1954, 41(1/2):100-115.
[19] Montgomery D C. SPC research-current trends. Qual. Reliab. Eng. Int., 2007, 23(5):515-516.
[20] Barnard G A. Control charts and stochastic processes. J. R. Stat. Soc. B, 1959, 21(2):239-257.
[21] Moustakides G V. Optimal stopping times for detecting changes in distributions. Ann. Stat., 1986, 14(4):1379-1387.
[1] 贡平邺, 郑冰静, 郭宝才. 基于加权似然比检验的自适应EWMA控制图设计[J]. 系统科学与数学, 0, (): 9-.
[2] 温丰;柴晓杰;朱智平;董小明;邹伟;原魁. 基于单目视觉的SLAM算法研究[J]. 系统科学与数学, 2010, 30(6): 827-839.
阅读次数
全文


摘要