• • 上一篇    

任意初态偏移下连续系统两阶段迭代学习控制

李国军, 卢甜甜, 范英盛   

  1. 浙江警察学院公共基础部, 杭州 310053
  • 收稿日期:2021-12-06 修回日期:2022-03-08 发布日期:2022-08-31
  • 通讯作者: 卢甜甜,Email:lutiantian@zjjcxy.cn.
  • 基金资助:
    北京东方计量测试研究所刘尚合院士专家工作站静电研究基金(BOIMTLSHJD20182001)资助课题.

李国军, 卢甜甜, 范英盛. 任意初态偏移下连续系统两阶段迭代学习控制[J]. 系统科学与数学, 2022, 42(7): 1700-1714.

LI Guojun, LU Tiantian, FAN Yingsheng. Two-Phase Iterative Learning Control for Continuous Systems with Random Initial State Shifts[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(7): 1700-1714.

Two-Phase Iterative Learning Control for Continuous Systems with Random Initial State Shifts

LI Guojun, LU Tiantian, FAN Yingsheng   

  1. Basic Courses Department, Zhejiang Police College, Hangzhou 310053
  • Received:2021-12-06 Revised:2022-03-08 Published:2022-08-31
针对任意初态偏差下的一阶状态跟踪系统,文章采取了两阶段迭代学习控制策略.首先,借助差分项将一阶非线性微分方程转换成线性非齐次微分方程,并根据一阶线性非齐次微分方程解的特点和初态偏差值选择合适的控制增益,确保系统稳定并在某个固定时刻达到稳态偏差输出.其次,在系统已经达到固定偏差输出的前提下,文中提供了两种固定偏差修正方法,即偏差修正控制和变轨迹控制.理论分析表明,文章所提的两阶段迭代学习控制策略能够确保系统在指定区间达到完全跟踪.最后的仿真验证了所提算法的有效性.
Aiming at the first-order state tracking systems with arbitrary initial state shifts, this paper presents a two-phase iterative learning control strategy. Firstly, by means of difference terms, the first-order nonlinear differential equation is converted into a first-order linear non-homogeneous differential equation. Utilizing the form of solution of the first-order linear non-homogeneous differential equation and the initial state shifts, we can select the appropriate control gain to ensure that the systems are stable and reach the stable output at a fixed time. Secondly, on the premise that the systems have reached the fixed output, two methods are proposed for rectifying the fixed shifts, namely, shifts rectifying control and alternative trajectory control. Theoretical analysis shows that the two-phase iterative learning control strategy proposed in this paper can ensure that the systems achieve complete tracking in the specified interval. The final simulations verify the effectiveness of the proposed algorithm.

MR(2010)主题分类: 

()
[1] Arimoto S, Kawamura S, Miyazaki F.Bettering operation of robots by learning.Journal of Robotic Systems, 1984, 1(2):123-140.
[2] Bristow D, Tharayil M, Alleyne A.A survey of iterative learning control.IEEE Control Systems, 2006, 26(3):96-114.
[3] Ahn H, Chen Y, Moore K.Iterative learning control:brief survey and categorization.IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, 2007, 37(6):1099-1121.
[4] XU J X.A survey on iterative learning control for nonlinear systems.International Journal of Control, 2011, 84(7):1275-1294.
[5] Norrlof M.An adaptive iterative learning control algorithm with experiments on an industrial robot.IEEE Transactions on Robotics&Automation, 2002, 18(2):245-251.
[6] Kim D, Kim S.An iterative learning control method with application for CNC machine tools.IEEE Transactions on Industry Applications, 1996, 32(1):66-72.
[7] Havlicsek H, Alleyne A.Nonlinear control of an electro hydraulic injection molding machine via iterative adaptive learning.IEEE/ASME Transactions on Mechatronics, 2015, 4(3):312-323.
[8] Hou Z S, Xu J X, Yan J W.An iterative learning approach for density control of freeway traffic flow via ramp metering.Transportation Research Part C:Emerging Technologies, 2008, 16(1):71-97.
[9] Ishihara T, Abe K.A discrete-time design of robust iterative learning controllers.IEEE Transactions on Systems Man&Cybernetics, 1992, 22(1):74-84.
[10] Chien C.A sampled-data iterative learning control using fuzzy network design.International Journal of Control, 2000, 73(10):902-913.
[11] Sun M, Wang D.Sampled-data iterative learning control for nonlinear systems with arbitrary relative degree.Automatica, 2001, 37(2):283-289.
[12] Longman R.Iterative learning control and repetitive control for engineering practice.International Journal of Control, 2000, 73(10):930-954.
[13] Saab S.A discrete-time stochastic learning control algorithm.IEEE Transactions on Automatic Control, 2001, 46(6):877-887.
[14] Meng D, Moore K.Contraction mapping-based robust convergence of iterative learning control with uncertain, locally lipschitz nonlinearity.IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(2):442-454.
[15] Li X, Shen D.Two novel iterative learning control schemes for systems with randomly varying trial lengths.Systems&Control Letters, 2017, 107:9-16.
[16] Heinzinger G, Fenwick D.Stability of learning control with disturbances and uncertain initial conditions.IEEE Transactions on Automatic Control, 1992, 37(1):110-114.
[17] Lee H, Bien Z.Study on robustness of iterative learning control with non-zero initial error.International Journal of Control, 1996, 64(3):345-359.
[18] Porter B, Mohamed S.Iterative learning control of partially irregular multivariable plants with initial impulsive action.International Journal of Systems Science, 1991, 22(3):447-454.
[19] Park K, Bien Z, Hwang D.A study on the robustness of a PID-type iterative learning controller against initial state error.International Journal of Systems Science, 1999, 30(1):49-59.
[20] Park K, Bien Z.A generalized iterative learning controller against initial state error.International Journal of Control, 2000, 73(10):871-881.
[21] Chen Y, Wen C, Gong Z, et al.An iterative learning controller with initial state learning.IEEE Transactions on Automatic Control, 1999, 44(2):371-376.
[22] 黄宝健,孙明轩,张学智.带有初始误差修正的迭代学习控制.自动化学报, 1999, 25(5):716-718.(Huang B J, Sun M X, Zhang X Z.Iterative learning control algorithms with initial update action.Acta Automatica Sinica, 1999, 25(5):716-718.)
[23] Meng D, Jia Y, Du J, et al.Tracking control over a finite interval for multi-agent systems with a time-varying reference trajectory.Systems&Control Letters, 2012, 61(7):807-818.
[24] 李国军,陈东杰,韩一士.带有初态误差的高阶多智能体系统一致性跟踪.应用数学学报, 2018, 41(2):156-171.(Li G J, Chen D J, Han Y S.Consensus tracking of high-order multi-agent systems with initial state errors, Acta Mathematicae Applicatae Sinica, 2018, 41(2):156-171.)
[25] Li G, Han Y, Lu T, et al.Iterative learning control for nonlinear multi-agent systems with initial shifts, IEEE Access, 2020, 8:144343-144351.
[26] Sun M, Wang D.Iterative learning control with initial rectifying action.Automatica, 2002, 38(7):1177-1182.
[27] Sun M, Wang D.Closed-loop iterative learning control for non-linear systems with initial shifts.International Journal of Adaptive Control&Signal Processing, 2002, 16:515-538.
[28] Ruan X, Bien Z.Pulse compensation PD-type iterative learning control against initial state shift.International Journal of Systems Science, 2012, 43(11):1-13.
[29] Li X, Chow T, Ho J, et al.Iterative learning control with initial rectifying action for nonlinear continuous systems.IET Control Theory&Applications, 2009, 3(1):49-55.
[30] 李国军,韩一士,陈东杰,等.任意初态下的迭代学习控制策略.应用数学, 2019, 32(2):155-162.(Li G J, Han Y S, Chen D J, et al.Iterative learning control with the arbitrary initial state errors.Mathematica Applicata, 2019, 32(2):155-162.)
[31] Sun M X.Two-phase attractors for finite-duration consensus of multiagent systems.IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(5):1757-1765.
[1] 刘艳霞, 王芝皓, 芮荣祥, 田茂再. 广义函数型部分变系数混合模型的估计[J]. 系统科学与数学, 2021, 41(6): 1742-1760.
[2] 宫文秀, 许作良. 基于二叉树与三叉树期权定价的交替树图方法[J]. 系统科学与数学, 2021, 41(12): 3478-3499.
[3] 简金宝, 徐笑, 晁绵涛. 非凸两分块优化超松弛步长邻近ADMM的收敛性分析[J]. 系统科学与数学, 2021, 41(11): 3139-3150.
[4] 李泽山,郭改枝. 基于WSN时钟同步的双迭代算法研究[J]. 系统科学与数学, 2020, 40(8): 1342-1351.
[5] 王淑华,王英杰,陈振龙,盛宝怀. 基于拟凸损失的核正则化成对学习算法的收敛速度[J]. 系统科学与数学, 2020, 40(3): 389-409.
[6] 曹伟,乔金杰. 永磁直线电机存在初态偏差时的迭代学习控制[J]. 系统科学与数学, 2020, 40(10): 1713-1722.
[7] 唐益萍,傅勤,王雪松. 基于迭代学习的正则非线性多智能体系统的跟踪控制[J]. 系统科学与数学, 2019, 39(8): 1171-1183.
[8] 彭再云,熊勤,王泾晶,王子元. 近似平衡约束下向量优化问题解集的上Painlev\'{e}-Kuratowski收敛性[J]. 系统科学与数学, 2018, 38(8): 960-970.
[9] 于静,韩鲁青. 一种改进的求解支持向量机模型的坐标梯度下降算法[J]. 系统科学与数学, 2018, 38(5): 583-590.
[10] 吴金明,单婷婷,朱春钢. 连续区间上积分值的二次样条拟插值[J]. 系统科学与数学, 2018, 38(12): 1407-1416.
[11] 吴金明,张雨,张晓磊,朱春钢. 连续区间上积分值的偶次样条插值[J]. 系统科学与数学, 2017, 37(10): 2085-2094.
[12] 王燕,李志明.  一类具有优良性质的五点二重逼近细分格式[J]. 系统科学与数学, 2017, 37(10): 2155-2162.
[13] 张曹津,殷刚,张庆. 马尔科夫模型下的股票大宗交易中的清算问题数值算法[J]. 系统科学与数学, 2017, 37(1): 33-52.
[14] 孙明轩,毕宏博,张杰. 非线性时变系统特征建模与自适应迭代学习控制[J]. 系统科学与数学, 2016, 36(4): 461-475.
[15] 张江波,洪奕光. 有限信域观点动力学建模和动态分析[J]. 系统科学与数学, 2016, 36(3): 319-335.
阅读次数
全文


摘要