胡雪梅1,2, 李佳丽1,2, 蒋慧凤3
胡雪梅, 李佳丽, 蒋慧凤. 机器学习方法研究肝癌预测问题[J]. 系统科学与数学, 2022, 42(2): 417-433.
HU Xuemei, LI Jiali, JIANG Huifeng. Machine Learning Methods Investigate Liver Cancer Prediction Problem[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(2): 417-433.
HU Xuemei1,2, LI Jiali1,2, JIANG Huifeng3
MR(2010)主题分类:
分享此文:
[1] Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439):531-537. [2] Khan J, Wei J S, Ringnér M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 2001, 7(6):673-679. [3] Dudoit S, Fridlyand J, Speed T P. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 2002, 97(457):77-87. [4] Isabelle G, Jason W, Stephen B, et al. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46(1-3):389-422. [5] Lin Y Z, Yu M G, Wang S J, et al. Advanced colorectal neoplasia risk stratification by penalized logistic regression. Statistical Methods in Medical Research, 2016, 25(4):1677-1691. [6] Morgul M H, Klunk S, Anastasiadou Z, et al. Diagnosis of HCC for patients with cirrhosis using miRNA profiles of the tumor-surrounding tissue-A statistical model based on stepwise penalized logistic regression. Experimental and Molecular Pathology, 2016, 101(2):165-171. [7] Huang M W, Chen C W, Lin W C, et al. SVM and SVM ensembles in breast cancer prediction. The Public Library of Science One, 2017, 12(1):1-14. [8] Morshid A, Elsayes Khaled M, Khalaf Ahmed M, et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization. Radiology Artificial Intelligence, 2019, 1(5):1-9. [9] Liao H T, Xiong T Y, Peng J J, et al. Classification and prognosis prediction from histopathological images of hepatocellular carcinoma by a fully automated pipeline based on machine learning. Annals of Surgical Oncology, 2020, 27(8):2359-2369. [10] Lu M Y, Fan Z J, Xu B, et al. Using machine learning to predict ovarian cancer. International Journal of Medical Informatics, 2020, 21(5):141-148. [11] Macaulay B O, Aribisala B S, Akande S A, et al. Breast cancer risk prediction in African women using random forest classifier. Cancer Treatment and Research Communications, 2021, 100396-100424. [12] Zou Z M, Chang D H, Liu H, et al. Current updates in machine learning in the prediction of therapeutic outcome of hepatocellular carcinoma:What should we know? Insights Into Imaging, 2021, 12(1):12-31. [13] Cessie S L, Van H J C. Ridge estimators in logistic regression. Journal of the Royal Statistical Society:Series C (Applied statistics), 1992, 41(1):191-201. [14] Zhao P, Yu B. On model selection consistency of lasso. Journal of Machine Learning Research, 2006, 7(21):2541-2563. [15] Zhu J, Hastie T. Classification of expression arrays by penalized logistic regression. Biostatistics, 2004, 5(3):427-443. [16] Meier L, Van D G S, Bühlmann P. The group lasso for logistic regression. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2008, 70(1):53-71. [17] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. New York:Springer, 2017. [18] McCullagh P, Nelder J A. Generalized Linear Models. 2nd Edition. London:Chapman Hall, 1989. [19] 胡雪梅, 刘锋. 高维统计模型的估计理论与模型识别. 北京:高等教育出版社, 2020. (Hu X M, Liu F. Estimation Theory and Model Recognition of High-Dimensional Statistical Models. Beijing:Higher Education Press, 2020.) [20] Knight K B, Fu W J. Asymptotics for lasso type estimators. The Annals of Statistics, 2000, 28(5):1356-1378. [21] Joes S, Michael D A, Meindert N, et al. Ridge-based vessel segmentation in color images of the retina. IEEE Transaction on Medical Imaging, 2004, 23(4):501-509. [22] Tropp A J. Algorithms for simultaneous sparse approximation. Part II:Convex relaxation. Signal Processing, 2006, 86(3):589-602. [23] Donoho D L. For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 2006, 59(6):797-829. [24] Meinshausen N. A note on the lasso for Gaussian graphical model selection. Statistics and Probability Letters, 2007, 78(7):880-884. [25] Lee A H, Silvapulle M J. Ridge estimation in logistic regression. Communications in Statistics-Simulation and Computation, 1988, 17(4):1231-1257. [26] Duffy D E, Santner T J. On the small sample properties of norm-restricted maximum likelihood estimators for logistic regression models. Communication in Statistics-Theory and Methods, 1989, 18(3):959-980. [27] Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995, 20(3):273-297. [28] 刘靖旭, 蔡怀平, 谭跃进. 支持向量回归参数调整的一种启发式算法. 系统仿真学报, 2007, (7):1540-1543. (Liu J X, Cai H P, Tan Y J. A heuristic algorithm for parameter adjustment of support vector regression. Journal of System Simulation, 2007, (7):1540-1543.) [29] Friedman J H. Greedy function approximation:A gradient boosting machine. Annals of Statistics, 2001, 29(5):1189-1232. [30] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 1943, 5(4):115-133. [31] 胡雪梅, 蒋慧凤. 具有技术指标的逻辑回归模型预测谷歌股票的涨跌趋势. 系统科学与数学, 2021, 41(3):802-823. (Hu X M, Jiang H F. Logistic regression model with technical indicators predicts ups and downs for google stock prices. Journal of Systems Science and Mathematical Sciences, 2021, 41(3):802-823.) [32] Chen T Q, Guestrin C. XGBoost:A scalable tree boosting system. The 22nd ACM SIGKDD International Conference, 2016, 13(8):785-794. |
[1] | 张婷婷, 王沫然, 魏得胜, 刘志峰. 季节调整FWA-SVR模型及其在旅游经济预测中的应用[J]. 系统科学与数学, 2021, 41(6): 1572-1584. |
[2] | 胡雪梅, 蒋慧凤. 具有技术指标的逻辑回归模型预测谷歌股票的涨跌趋势[J]. 系统科学与数学, 2021, 41(3): 802-823. |
[3] | 李萍,倪志伟,朱旭辉,宋娟. 基于改进萤火虫算法的SVR空气污染物浓度预测模型[J]. 系统科学与数学, 2020, 40(6): 1020-1036. |
[4] | 韩璐,苏治,刘志东. 金融市场的协动预测模型: DWT-SVM方法[J]. 系统科学与数学, 2020, 40(12): 2342-2356. |
[5] | 于静,韩鲁青. 一种改进的求解支持向量机模型的坐标梯度下降算法[J]. 系统科学与数学, 2018, 38(5): 583-590. |
[6] | 张文,崔杨波,姜祎盼. 基于SVM$^{K\text{-}{\rm Means}}$的非均衡P2P网贷平台风险预测研究[J]. 系统科学与数学, 2018, 38(3): 364-378. |
[7] | 李萍,倪志伟,朱旭辉,伍章俊. 基于分形流形学习的支持向量机空气污染指数预测模型[J]. 系统科学与数学, 2018, 38(11): 1296-1306. |
[8] | 唐振鹏,黄双双,陈尾虹. 基于支持向量机的银行系统重要性评估研究[J]. 系统科学与数学, 2018, 38(1): 57-77. |
[9] | 朱旭辉,倪志伟,倪丽萍,程美英,李敬明,金飞飞. 基于相异度的SVM选择性集成雾霾天气预测方法[J]. 系统科学与数学, 2017, 37(6): 1480-1493. |
[10] | 王勇,董恒新. 大数据背景下中国季度失业率的预测研究------基于网络搜索数据的分析[J]. 系统科学与数学, 2017, 37(2): 460-472. |
[11] | 张燕,张晨光,张夏欢. 平衡化图半监督学习方法[J]. 系统科学与数学, 2016, 36(8): 1107-1118. |
[12] | 朱旭辉,倪志伟,程美英. 基于人工鱼群和分形学习的雾霾天气预报方法[J]. 系统科学与数学, 2016, 36(11): 1887-1901. |
[13] | 张少白,曾又,刘友谊. 基于DIVA模型的脑电信号识别方法[J]. 系统科学与数学, 2015, 35(5): 489-498. |
[14] | 张国山,王一鸣,王世伟,刘万泉. 常微分方程近似解的LS-SVM改进求法[J]. 系统科学与数学, 2013, 33(6): 695-707. |
[15] | 许洪贵;赵琨;田英杰. 鲁棒半监督$\nu$-支持向量分类机[J]. 系统科学与数学, 2010, 30(2): 265-273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||