杨晓蓉, 李路, 吴士迪, 徐诗展
杨晓蓉, 李路, 吴士迪, 徐诗展. 基于外推中间次序分位数的极端条件分位数估计[J]. 系统科学与数学, 2022, 42(2): 434-461.
YANG Xiaorong, LI Lu, WU Shidi, XU Shizhan. Extreme Conditional Quantile Estimation via Extrapolated Intermediate Ordinal Quantiles[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(2): 434-461.
YANG Xiaorong, LI Lu, WU Shidi, XU Shizhan
MR(2010)主题分类:
分享此文:
[1] 史道济. 实用极值统计方法. 天津:天津科学技术出版社, 2006. (Shi D J. Practical Methods of Extreme Value Statistics. Tianjin:Tianjin Science and Technology Press, 2006.) [2] Koenker R, Bassett G. Regression quantiles. Econometrica, 1978, 46(1):33-50. [3] 韩月丽. 极值统计与分位数回归理论及其应用. 博士论文, 天津大学, 天津, 2009. (Han Y L. Extreme value statistics and quantile regression:Theory and application. Doctoral Dissertation, Tianjin University, Tianjin, 2009.) [4] Chernozhukov V. Extremal quantile regression. Annals of Statistics, 2005, 33(2):806-839. [5] Wang H J, Li D, He X. Estimation of high conditional quantiles for heavy-tailed distributions. Journal of the American Statistical Association, 2012, 107(500):1453-1464. [6] Wang H J, Li D. Estimation of extreme conditional quantiles through power transformation. Journal of the American Statistical Association, 2013, 108(503):1062-1074. [7] Daouia A, Gardes L, Girard S, et al. Kernel estimators of extreme level curves. TEST, 2011, 20(2):311-333. [8] Daouia A, Gardes L, Girard S. On kernel smoothing for extremal quantile regression. Bernoulli, 2013, 19(5B):2557-2589. [9] He F, Cheng Y, Tong T. Estimation of high conditional quantiles using the Hill estimator of the tail index. Journal of Statistical Planning and Inference, 2016, 176(14):64-77. [10] Zhu L, Zhang Y, Xu K. Measuring and testing for interval quantile dependence. The Annals of Statistics, 2018, 46(6A):2683-2710. [11] Huang M, Xu X, Tashnev D. A weighted linear quantile regression. Journal of Statistical Computation and Simulation, 2015, 85(13):2596-2618. [12] Goegebeur Y, Guillou A. Asymptotically unbiased estimation of the coefficient of tail dependence. Scandinavian Journal of Statistics, 2013, 40(1):174-189. [13] Gomes M I, De Haan L, Peng L. Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes, 2002, 5(4):387-414. [14] Chavez-Demoulin V, Guillou A. Extreme quantile estimation for $\beta$-mixing time series and applications. Insurance:Mathematics and Economics, 2018, 83(16):59-74. [15] Kai B, Li R, Zou H. Local composite quantile regression smoothing:An efficient and safe alternative to local polynomial regression. Journal of the Royal Statistical Society:Series B $($Statistical Methodology$)$, 2010, 72(1):49-69. [16] Tang L, Zhou Z, Wu C. Weighted composite quantile estimation and variable selection method for censored regression model. Statistics and Probability Letters, 2011, 82(3):653-663. [17] Chernozhukov V, Fernández-Val I. Inference for extremal conditional quantile models, with an application to market and birth-weight risks. The Review of Economic Studies, 2011, 78(2):559-589. [18] de Haan L, Mercadier C, Zhou C. Adapting extreme value statistics to financial time series:Dealing with bias and serial dependence. Finance and Stochastics, 2016, 20(2):321-354. [19] de Haan L, Rootzén H. On the estimation of high quantiles. Journal of Statistical Planning and Inference, 1993, 35(1):1-13. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||