张小圆1, 邓昌瑞1, 黄艳梅1, 鲍玉昆2
张小圆, 邓昌瑞, 黄艳梅, 鲍玉昆. 基于Jackknife模型平均的社会用电量预测研究[J]. 系统科学与数学, 2022, 42(3): 588-598.
ZHANG Xiaoyuan, DENG Changrui, HUANG Yanmei, BAO Yukun. Social Electricity Consumption Forecasting Based on Jackknife Model Averaging[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(3): 588-598.
ZHANG Xiaoyuan1, DENG Changrui1, HUANG Yanmei1, BAO Yukun2
MR(2010)主题分类:
分享此文:
[1] Vu D H, Muttaqi K M, Agalgaonkar A J A E. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Applied Energy, 2015, 140:385-394. [2] Mirasgedis S, Sarafidis Y, Georgopoulou E, et al. Models for mid-term electricity demand forecasting incorporating weather influences. Energy, 2006, 31(2-3):208-227. [3] Taylor J W. Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 2003, 54(8):799-805. [4] Hussain A, Rahman M, Memon J A J E P. Forecasting electricity consumption in Pakistan:The way forward. Energy Policy, 2016, 90:73-80. [5] 郭松亮, 闫鹏君, 鄂浩坤. 基于ARIMA模型的北京市全社会用电量短期预测. 北京信息科技大学学报(自然科学版), 2020, 35(5):93-96. (Guo S L, Yan P J, E H K. Short-term forecast of the total electricity consumption in Beijing based on ARIMA model. Journal of Beijing Information Science & Technology University, 2020, 35(5):93-96.) [6] Yuan J, Farnham C, Azuma C, et al. Predictive artificial neural network models to forecast the seasonal hourly electricity consumption for a university campus. Sustainable Cities and Society, 2018, 42:82-92. [7] Cao G, Wu L. Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting. Energy, 2016, 115:734-745. [8] Kaytez F, Taplamacioglu M C, Cam E, et al. Forecasting electricity consumption:A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 2015, 67:431-438. [9] Bianco V, Manca O, Nardini S J E. Electricity consumption forecasting in Italy using linear regression models. Energy, 2009, 34(9):1413-1421. [10] Egelioglu F, Mohamad A, Guven H J E. Economic variables and electricity consumption in Northern Cyprus. Energy, 2001, 26(4):355-362. [11] 张新雨, 邹国华. 模型平均方法及其在预测中的应用. 统计研究, 2011, 28(6):97-102. (Zhang X Y, Zou G H. Model averaging method and its application in forecast. Statistical Research, 2011, 28(6):97-102.) [12] De Oliveira E M, Cyrino Oliveira F L. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy, 2018, 144(FEB.1):776-788. [13] Li W D, Yang X, Li H, et al. Hybrid forecasting approach based on GRNN neural network and SVR machine for electricity demand forecasting. Energies, 2017, 10(1):44. [14] Kaytez F. A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy, 2020, 197:117200. [15] Guefano S, Tamba J G, Azong T E W, et al. Methodology for forecasting electricity consumption by Grey and Vector autoregressive models. MethodsX, 2021, 8:101296. [16] 张健, 孙玉莹, 张新雨, 等. 基于时变模型平均方法的我国航空客运量预测. 系统工程理论与实践, 2020, 40(6):1509-1519. (Zhang J, Sun Y Y, Zhang X Y, et al. Time-varying forecast averaging for air passengers in China. Systems Engineering-Theory & Practice, 2020, 40(6):1509-1519.) [17] 高研, 周建红, 王海涛, 等. 基于Jackknife模型平均方法的中国港口集装箱吞吐量预测. 系统科学与数学, 2020, 40(4):729-737. (Gao Y, Zhou J H, Wang H T, et al. Forecasting Chinese ports container throughout based on the Jackknife model averaging method. Journal of Systems Science and Mathematical Sciences, 2020, 40(4):729-737.) [18] 乔婧妍, 李莉莉, 于宝杰, 等. 基于模型平均方法的中国通货膨胀率的预测研究. 青岛大学学报(自然科学版), 2019, 32(1):131-134. (Qiao J Y, Li L L, Yu B J, et al. Prediction of China's inflation rate based on model averaging method. Journal of Qingdao University (Natural Science Edition), 2019, 32(1):131-134.) [19] Hansen B E, Racine J S. Jackknife model averaging. Journal of Econometrics, 2012, 167(1):38-46. [20] Zhang X, Wan A T K, Zou G. Model averaging by Jackknife criterion in models with dependent data. Journal of Econometrics, 2013, 174(2):82-94. [21] The Bootstrap and the Jackknife. Wasserman L. All of Nonparametric Statistics. New York:Springer, 2006, 27-41. [22] Li K C. Asymptotic optimality for $C_p, C_L$, cross-validation and generalized cross-validation:Discrete index set. The Annals of Statistics, 1987, 15(3):958-975. [23] Buckland S T K, Burnham K P, Augustin N H. Model selection:An integral part of inference. Biometrics, 1997, 53(2):603-618. [24] Wan A T K, Zhang X, Zou G. Least squares model averaging by Mallows criterion. Journal of Econometrics, 2010, 156(2):277-283. [25] Diebold F X, Mariano R S. Comparing predictive accuracy. Journal of Business and Economic Statistics, 2002, 20(1):134-44. |
[1] | 余世明, 李壮, 陈龙, 何德峰. 可扩展非线性异构车队系统分布式模型预测控制[J]. 系统科学与数学, 2021, 41(3): 602-614. |
[2] | 倪洪杰,何德峰,俞立. 轮式移动舞台机器人双模模型预测控制[J]. 系统科学与数学, 2018, 38(11): 1229-1239. |
[3] | 刘安东,孙辉,俞立,张文安. 通信约束广域电力系统的分布式模型预测控制[J]. 系统科学与数学, 2016, 36(6): 749-758. |
[4] | 张聚,胡标标,谢作樟,龚俊强. 显式模型预测控制的可达分区点定位算法[J]. 系统科学与数学, 2016, 36(10): 1585-1596. |
[5] | 张聚,余蓉. 快速在线模型预测及在三自由度直升机中的应用[J]. 系统科学与数学, 2016, 36(10): 1618-1629. |
[6] | 仇翔,俞立,刘安东. 时滞供应链网络系统的切换模型预测控制方法[J]. 系统科学与数学, 2015, 35(4): 407-418. |
[7] | 黄骅,何德峰,俞立. 增广吸引域快速预测控制算法[J]. 系统科学与数学, 2013, 33(3): 322-333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||