• • 上一篇    下一篇

基于Jackknife模型平均的社会用电量预测研究

张小圆1, 邓昌瑞1, 黄艳梅1, 鲍玉昆2   

  1. 1. 江西工程学院大数据中心, 新余 338029;
    2. 华中科技大学管理学院, 武汉 430074
  • 收稿日期:2021-02-21 修回日期:2021-09-01 出版日期:2022-04-20 发布日期:2022-04-20
  • 通讯作者: 鲍玉昆,Email:yukunbao@hust.edu.cn.
  • 基金资助:
    国家自然科学基金(71871101)资助课题.

张小圆, 邓昌瑞, 黄艳梅, 鲍玉昆. 基于Jackknife模型平均的社会用电量预测研究[J]. 系统科学与数学, 2022, 42(3): 588-598.

ZHANG Xiaoyuan, DENG Changrui, HUANG Yanmei, BAO Yukun. Social Electricity Consumption Forecasting Based on Jackknife Model Averaging[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(3): 588-598.

Social Electricity Consumption Forecasting Based on Jackknife Model Averaging

ZHANG Xiaoyuan1, DENG Changrui1, HUANG Yanmei1, BAO Yukun2   

  1. 1. Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu 338029;
    2. School of Management, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2021-02-21 Revised:2021-09-01 Online:2022-04-20 Published:2022-04-20
针对社会用电量波动的复杂性,文章将Jackknife模型平均理论引入社会用电量分析与预测研究中,通过加权平均不同模型的预测值,最大限度减少有用信息的遗失,以提高社会用电量预测准确度.通过选取中国和美国不同时期社会用电量数据集,并使用各类预测误差指标以及Diebold-Mariano检验法,来验证所提出的Jackknife模型平均方法的有效性.研究结果表明:Jackknife模型平均方法可以有效降低单个社会用电量预测模型的预测误差,为用电量预测提供了一种新的建模框架.
The accurate prediction of electricity consumption points out the fluctuation range of electricity consumption in a given time window in the future, which not only provides important information for power supply enterprises, but also an important basis for power departments to formulate relevant policies. In view of the complexity of electricity consumption fluctuations, the Jackknife model average (JMA) theory is employed for electricity consumption forecasting. This technique maximizes the utilization of various information by weighting the predicted values of different models, and finally improves the accuracy of electricity consumption prediction. Furthermore, the forecasting performance of the JMA method is evaluated and compared with seven benchmark models on the basis of accuracy measures and Diebold-Mariano test by selecting the monthly electricity consumption data sets of China and the United States in different periods. The experimental results show that the Jackknife model average method can effectively reduce the prediction error of a single electricity consumption prediction model and is an effective electricity consumption prediction model.

MR(2010)主题分类: 

()
[1] Vu D H, Muttaqi K M, Agalgaonkar A J A E. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Applied Energy, 2015, 140:385-394.
[2] Mirasgedis S, Sarafidis Y, Georgopoulou E, et al. Models for mid-term electricity demand forecasting incorporating weather influences. Energy, 2006, 31(2-3):208-227.
[3] Taylor J W. Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 2003, 54(8):799-805.
[4] Hussain A, Rahman M, Memon J A J E P. Forecasting electricity consumption in Pakistan:The way forward. Energy Policy, 2016, 90:73-80.
[5] 郭松亮, 闫鹏君, 鄂浩坤. 基于ARIMA模型的北京市全社会用电量短期预测. 北京信息科技大学学报(自然科学版), 2020, 35(5):93-96. (Guo S L, Yan P J, E H K. Short-term forecast of the total electricity consumption in Beijing based on ARIMA model. Journal of Beijing Information Science & Technology University, 2020, 35(5):93-96.)
[6] Yuan J, Farnham C, Azuma C, et al. Predictive artificial neural network models to forecast the seasonal hourly electricity consumption for a university campus. Sustainable Cities and Society, 2018, 42:82-92.
[7] Cao G, Wu L. Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting. Energy, 2016, 115:734-745.
[8] Kaytez F, Taplamacioglu M C, Cam E, et al. Forecasting electricity consumption:A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 2015, 67:431-438.
[9] Bianco V, Manca O, Nardini S J E. Electricity consumption forecasting in Italy using linear regression models. Energy, 2009, 34(9):1413-1421.
[10] Egelioglu F, Mohamad A, Guven H J E. Economic variables and electricity consumption in Northern Cyprus. Energy, 2001, 26(4):355-362.
[11] 张新雨, 邹国华. 模型平均方法及其在预测中的应用. 统计研究, 2011, 28(6):97-102. (Zhang X Y, Zou G H. Model averaging method and its application in forecast. Statistical Research, 2011, 28(6):97-102.)
[12] De Oliveira E M, Cyrino Oliveira F L. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy, 2018, 144(FEB.1):776-788.
[13] Li W D, Yang X, Li H, et al. Hybrid forecasting approach based on GRNN neural network and SVR machine for electricity demand forecasting. Energies, 2017, 10(1):44.
[14] Kaytez F. A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy, 2020, 197:117200.
[15] Guefano S, Tamba J G, Azong T E W, et al. Methodology for forecasting electricity consumption by Grey and Vector autoregressive models. MethodsX, 2021, 8:101296.
[16] 张健, 孙玉莹, 张新雨, 等. 基于时变模型平均方法的我国航空客运量预测. 系统工程理论与实践, 2020, 40(6):1509-1519. (Zhang J, Sun Y Y, Zhang X Y, et al. Time-varying forecast averaging for air passengers in China. Systems Engineering-Theory & Practice, 2020, 40(6):1509-1519.)
[17] 高研, 周建红, 王海涛, 等. 基于Jackknife模型平均方法的中国港口集装箱吞吐量预测. 系统科学与数学, 2020, 40(4):729-737. (Gao Y, Zhou J H, Wang H T, et al. Forecasting Chinese ports container throughout based on the Jackknife model averaging method. Journal of Systems Science and Mathematical Sciences, 2020, 40(4):729-737.)
[18] 乔婧妍, 李莉莉, 于宝杰, 等. 基于模型平均方法的中国通货膨胀率的预测研究. 青岛大学学报(自然科学版), 2019, 32(1):131-134. (Qiao J Y, Li L L, Yu B J, et al. Prediction of China's inflation rate based on model averaging method. Journal of Qingdao University (Natural Science Edition), 2019, 32(1):131-134.)
[19] Hansen B E, Racine J S. Jackknife model averaging. Journal of Econometrics, 2012, 167(1):38-46.
[20] Zhang X, Wan A T K, Zou G. Model averaging by Jackknife criterion in models with dependent data. Journal of Econometrics, 2013, 174(2):82-94.
[21] The Bootstrap and the Jackknife. Wasserman L. All of Nonparametric Statistics. New York:Springer, 2006, 27-41.
[22] Li K C. Asymptotic optimality for $C_p, C_L$, cross-validation and generalized cross-validation:Discrete index set. The Annals of Statistics, 1987, 15(3):958-975.
[23] Buckland S T K, Burnham K P, Augustin N H. Model selection:An integral part of inference. Biometrics, 1997, 53(2):603-618.
[24] Wan A T K, Zhang X, Zou G. Least squares model averaging by Mallows criterion. Journal of Econometrics, 2010, 156(2):277-283.
[25] Diebold F X, Mariano R S. Comparing predictive accuracy. Journal of Business and Economic Statistics, 2002, 20(1):134-44.
[1] 余世明, 李壮, 陈龙, 何德峰. 可扩展非线性异构车队系统分布式模型预测控制[J]. 系统科学与数学, 2021, 41(3): 602-614.
[2] 倪洪杰,何德峰,俞立. 轮式移动舞台机器人双模模型预测控制[J]. 系统科学与数学, 2018, 38(11): 1229-1239.
[3] 刘安东,孙辉,俞立,张文安. 通信约束广域电力系统的分布式模型预测控制[J]. 系统科学与数学, 2016, 36(6): 749-758.
[4] 张聚,胡标标,谢作樟,龚俊强. 显式模型预测控制的可达分区点定位算法[J]. 系统科学与数学, 2016, 36(10): 1585-1596.
[5] 张聚,余蓉. 快速在线模型预测及在三自由度直升机中的应用[J]. 系统科学与数学, 2016, 36(10): 1618-1629.
[6] 仇翔,俞立,刘安东. 时滞供应链网络系统的切换模型预测控制方法[J]. 系统科学与数学, 2015, 35(4): 407-418.
[7] 黄骅,何德峰,俞立. 增广吸引域快速预测控制算法[J]. 系统科学与数学, 2013, 33(3): 322-333.
阅读次数
全文


摘要