刘洋铄, 刘宏宇, 葛焕敏
刘洋铄, 刘宏宇, 葛焕敏. 无约束的$\ell_{2,1}$-分析法重构冗余紧框架下分块稀疏信号的条件[J]. 系统科学与数学, 2022, 42(3): 509-527.
LIU Yangshuo, LIU Hongyu, GE Huanmin. The Condition for the Recovery of Block Sparse Signal Based on Redundant Tight Frame via the Unconstrained $\ell_{2,1}$-Analysis Method[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(3): 509-527.
LIU Yangshuo, LIU Hongyu, GE Huanmin
MR(2010)主题分类:
分享此文:
[1] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 2006, 59:1207-1223. [2] 王忠梅, 许克明, 张焕水. 不确定量测联合信号重构的稳定性. 系统科学与数学, 2014, 34(10):1244-1251. (Wang Z M, Xu K M, Zhang H S. Stability of jointly sparse signal recovery with uncertain measurements. Journal of Systems Science and Mathematical Sciences, 2014, 34(10):1244-1251.) [3] Cai T, Zhang A. Spares representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inform. Theory, 2014, 60(1):122-132. [4] 张万宏, 张妍, 周维琴. 一种基于野值剔除方法的稀疏重构算法. 系统科学与数学, 2015, 35(9):1018-1027. (Zhang W H, Zhang Y, Zhou W Q. A sparse reconstruction algorithm based on outlier deletion method. Journal of Systems Science and Mathematical Sciences, 2015, 35(9):1018-1027.) [5] 王建军, 袁建军, 王尧. 基于混合$l_2/l_1$范数极小化方法的块稀疏信号重构条件. 数学学报, 2017, 60(4):619-630. (Wang J J, Yuan J J, Wang R. Improved condition of block-sparse signals recovery via mixed $l_2/l_1$ norm minimization. Acta Mathematica Sinica (Chinese Series), 2017, 60(4):619-630.) [6] Zhang R, Li S. A proof of conjecture on restricted isometry property constants $\delta_{tk}$ ($0<t<\frac{4}{3}$). IEEE Trans. Inform. Theory, 2018, 64(3):1699-1705. [7] 聂栋栋, 弓耀玲. 基于近似$l_0$范数的稀疏信号重构. 计算机研究与发展, 2018, 55(5):1090-1096. (Nie D D, Gong Y L. A sparse signal reconstruction algorithm based on approximate $l_0$ norm. Journal of Computer Researcher and Development, 2018, 55(5):1090-1096.) [8] 周雪芹, 冯象初, 景明利. 一种自适应的拟牛顿投影稀疏信号恢复算法. 西安电子科技大学学报, 2019, 46(3):14-19. (Zhou X Q, Feng X C, Jing M L. Adaptive quasi-newton projection algorithm for sparse recover. Journal of Xidian University, 2019, 46(3):14-19.) [9] Candès E J, Eldar Y C, Needell D, et al. Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon Anal., 2011, 31(1):59-73. [10] Liu Y, Mi T, Li S. Compressed sensing with general frames via optimal-dual-based $l_1$-analysis. IEEE Trans. Inform. Theory, 2012, 58(7):4201-4214. [11] Lin J, Li S, Shen Y. New bounds for resticted isometry constants with coherent tight frames. IEEE Trans. Signal Process, 2013, 61(3):611-621. [12] Li S, Lin J. Compressed sensing with coherent tight frame via lq-minimination for 0< q ≤ 1. Inverse Probl. Imaging, 2014, 8(3):761-777. [13] Zhang R, Li S. Optimal D-RIP bounds in compressed sensing. Acta Math. Sin., 2015, 31(5):755-766. [14] Chen W G, Li Y L. Stable recovery of signals with the high order D-RIP condition. Acta Math. Sci., 2016, 36B(6):1721-1730. [15] Lin J H, Li S. Sparse recovery with coherent tight frame via analysis dantzig selector and analysis lasso. Appl. Comput. Harmon Anal., 2014, 37(1):126-139. [16] Zhao T, Eldar Y C, Beck A, et al. Smoothing and decomposition for analysis sparse recovery. IEEE Trans. Signal Process, 2014, 62(7):1762-1774. [17] Shen Y, Han B, Braverman E. Stable recovery of analysis based approaches. Appl. Comput. Harmon. Anal., 2015, 39(1):161-172. [18] Ge H M, Wen J M, Chen W G, et al. Stable sparse recovery with three unconstrained analysis based approaches. http://alpha.math.uga.edu/mjlai/papers/20180126.pdf, 2018. [19] Wang Y, Wang J J, Xu Z B. A note on block-sparse signals recovery with coherent tight frames. Discrete Dynamics in Nature and Society, 2013, 1-8, ID 905027. [20] 张枫, 王建军. 基于冗余紧框架的$l_2/l_1$极小化块稀疏压缩感知. 纯粹数学与应用数学, 2019, 35(2):138-150. (Zhang F, Wang J J. Block-sparse compressed densing with redundant tight frames via $l_2/l_1$-minimization. Pure and Applied Mathematics, 2019, 35(2):138-150.) [21] Chen W G, Li Y L. The high order block RIP condition for signal recovery. Journal of Computational Mathematics, 2019, 37(1):61-75. |
[1] | 王忠梅,许克明,张焕水. 不确定量测联合信号重构的稳定性[J]. 系统科学与数学, 2014, 34(10): 1244-1251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||