• •

### 基于牛顿定律设计的无模型不确定性控制系统

1. 1. 国家发展改革委能源研究所, 北京 100053;
2. 长沙理工大学电气与信息工程学院, 长沙 410114
• 收稿日期:2020-06-07 修回日期:2021-10-01 出版日期:2022-02-25 发布日期:2022-03-21
• 通讯作者: 申忠利,Email:www-lieon@126.com.
• 基金资助:
国家自然科学基金（51977012）资助课题.

KAI Ping'an, SHEN Zhongli. A Model-Free Design Method of Uncertainty Control System Based on Newton's Laws of Motion[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(2): 206-223.

### A Model-Free Design Method of Uncertainty Control System Based on Newton's Laws of Motion

KAI Ping'an1, SHEN Zhongli2

1. 1. Energy Research Institute, State Development and Reform Committee of China, Beijing 100053;
2. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114
• Received:2020-06-07 Revised:2021-10-01 Online:2022-02-25 Published:2022-03-21

In engineering practice, it is of great significance to design a controller which is easy to use and maintain for the uncertainty of industrial process. Newton's law was one of the most familiar physical laws for engineers and technicians. Based on Newton's law, this paper proposes a model-free uncertainty control system and its design method. By constructing three state variables of the controlled system, i.e., position, velocity and acceleration, and applying Kalman filter theory, an observer based on Newton motion law (ONLM) is designed. And then a closed-loop compensator is designed according to the position, velocity and acceleration, and then a model free control system (MFCNLM) is brought into being, which makes the system output track the desired output trajectory. Furtherly, this paper puts forward a PID controller design method based on the principle of Newton motion law, and analyzes and demonstrates the Newton motion law of MFCNLM control method and PID control method in control system design. The design method proposed in this paper does not need the mathematical model of the controlled object, but only needs the control engineer to give the expected transition time $T$ of the closed-loop control system. The results show that the proposed method has good control quality and robust performance for uncertain systems.

MR(2010)主题分类:

()
 [1] Nakhmani A. Modern Control:State-Space Analysis and Design Methods. New York:McGraw-Hill Education, 2020.[2] Williams R L, Lawrence D A. Linear State-Space Control Systems. New Jersey:John Wiley & Sons, 2007.[3] Kalman R E. New results in linear filtering and prediction theory. J. Basic Eng. ASME Trans. Ser. D, 1961, 83(1):95-108.[4] Kudva P, Viswanadham N, Ramakrishna A. Observers for linear systems with unknown inputs. IEEE Trans. Autom. Control, 1980, 25(1):113-115.[5] Simon D. Optimal State Estimation:Kalman, $H^{\infty}$, and Nonlinear Approaches. New Jersey:Wiley-Interscience, 2006.[6] Chui C K, Chen G. Kalman Filtering with Real-Time Applications. 5th Edition. Berlin:Springer International Publishing, 2017.[7] 韩京清. 自抗扰控制技术. 北京:国防工业出版社, 2008. (Han J Q. Active Disturbance Rejection Control Technique. Beijing:National Defense Industry Press, 2008.)[8] 黄一, 薛文超. 自抗扰控制:思想、应用及理论分析. 系统科学与数学, 2012, 32(10):1287-1307. (Huang Y, Xue W C. Active disturbance rejection control:Methodology, applications and theoretical analysis. Journal of Systems Science and Mathematical Sciences, 2012, 32(10):1287-1307.)[9] Guo B Z, Wu Z H, Zhou H C. Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Trans. Autom. Control, 2016, 61(6):1613-1618.[10] Ho M T, Datta A, Bhattacharyya S P. Robust and non-fragile PID controller design. International Journal of Robust and Nonlinear Control:IFAC-Affiliated Journal, 2001, 11(7):681-708.[11] Astrom K J, Hagglund, T. "PID Control", the Control Handbook. Ed. by Levine W S. Boca Raton:CRC Press and IEEE Press, 1996.[12] 孙炳达. 现代控制理论基础. 北京:机械工业出版社, 2018(Sun B D. Fundamentals of Modern Control Theory. Beijing:Machine Industry Press, 2018.)[13] 侯忠生, 金尚泰. 无模型自适应控制——理论与应用. 北京:科学出版社, 2013. (Hou Z S, Jin S T. Model-Free Adaptive Control-Theory and Application. Beijing:Science Press, 2013.)[14] Stanley G M. Big data approximating control (BDAC)-A new model-free estimation and control paradigm based on pattern matching and approximation. J. Process Control, 2018, 67(6):141-159.[15] 开平安, 刘建民, 焦嵩鸣,等. 火电厂热工过程先进控制技术. 北京:中国电力出版社, 2010. (Kai P A, Liu J M, Jiao S M, et al. Advanced Control Technology of Thermal Power Plant Process. Beijing:China Electric Power Press, 2010.)
 [1] 郑永和. 面向产业创新需求加强基础研究[J]. 系统科学与数学, 2014, 34(10): 1154-1158. [2] 韩志刚. 无模型控制律的特征参量分析与估计[J]. 系统科学与数学, 2014, 34(10): 1159-1171. [3] 侯忠生. 再论无模型自适应控制[J]. 系统科学与数学, 2014, 34(10): 1182-1191.