
高维投资组合风险的估计
Estimation of High Dimensional Portfolio Risk
在大数据时代, 如何估计高维投资组合的风险是金融机构面临的一大难题. 针对这一难题, 文章主要做了两方面研究: 首先, 将非线性收缩法 和QuEST函数应用到BEKK模型中, 提出BEKK-NS模型, 以估计和预测在资产组合中扮演着重要角色的资产协方差阵. 该模型同时适用于估计正态分布和厚尾分布数据的协方差阵, 并且能够很好地解决维数诅咒问题, 提高协方差阵的估计效率. 其次, 构造了基于循环分块bootstrap方法的极限误差
In the era of big data, it is a big challenge for financial institutions to estimate the risk of high dimensional portfolios. This thesis~focused~on~the~following~two~aspects: Firstly, the non-linear shrinkage method and the QuEST function are applied to the BEKK model, and a new covariance matrix estimation and prediction model --- BEKK-NS is proposed to estimate and predict the covariance matrix that plays an important role in the portfolio. The model not only can be used to estimate the covariance matrix of the normal distribution and the heavy tailed distribution, but also can solve the curse of dimensionality and improve the efficiency of the covariance matrix; Secondly, the limit errors
高维投资组合 / BEKK-NS模型 / 非线性收缩法 / QuEST函数. {{custom_keyword}} /
/
〈 |
|
〉 |