• 论文 • 上一篇    下一篇

非线性Black-Scholes模型下障碍期权定

孙玉东,王秀芬,童红   

  1. 贵州民族大学理学院, 贵阳 550025
  • 出版日期:2016-04-25 发布日期:2016-05-09

孙玉东,王秀芬,童红. 非线性Black-Scholes模型下障碍期权定[J]. 系统科学与数学, 2016, 36(4): 513-527.

SUN Yudong,WANG Xiufen,TONG Hong. BARRIER OPTIONS' PRICING UNDER THE NONLINEAR BLACK-SCHOLES MODEL[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(4): 513-527.

BARRIER OPTIONS' PRICING UNDER THE NONLINEAR BLACK-SCHOLES MODEL

SUN Yudong ,WANG Xiufen ,TONG Hong   

  1. School of Science, Guizhou Minzu University, Guiyang 550025
  • Online:2016-04-25 Published:2016-05-09

研究了原生资产价格遵循非线性Black-Scholes模型时障碍期权的定价问题. 首先,根据混合分数布朗运动的Ito公式和金融市场的复制策略,得到了障碍期权适合的抛物初边值问题. 其次,利用扰动理论中单参数摄动展开方法,给出了障碍期权的近似定价公式. 最后,利用Feyman-Kac公式分析了近似定价公式的误差估计问题,结果表明近似解一致收敛于相应期权价格的精确解.

In this paper, the pricing problems of barrier options are discussed under the condition that the price of underlying asset follows the nonlinear Black-Scholes model. First, the parabolic initial- boundary value problems for barrier options are obtained by replicating strategy and Ito formula for the mixed fractional Brownian motion. Second, the author uses the perturbation method of single-parameter to obtain asymptomatic formulae of barrier options pricing problems. Finally, error estimates of these asymptotic solutions are illustrated by using the Feymann-Kac formula in which the results indicate that the asymptotic solutions uniformly converges to its exact solutions.

MR(2010)主题分类: 

()
[1] 王建宏,熊朝华,许莺,徐欣. 非参数频响函数辨识的约束局部多项式法[J]. 系统科学与数学, 2016, 36(11): 1815-1824.
[2] 曾振柄;张景中. 基于矩形区域剖分的不等式机器证明方法---以Zirakzadeh的一个几何不等式为例[J]. 系统科学与数学, 2010, 30(11): 1430-1458.
[3] 彭凯军;檀结庆. 伪多元函数的Pad\'{e}型逼近[J]. 系统科学与数学, 2009, 29(7): 971-979.
阅读次数
全文


摘要