Vincent 定理的多元推广

徐嘉,姚勇

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (1) : 115-122.

PDF(315 KB)
PDF(315 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (1) : 115-122. DOI: 10.12341/jssms12719
论文

Vincent 定理的多元推广

    徐嘉1,姚勇2
作者信息 +

A GENERALIZATION OF VINCENT'S THEOREM TO MULTIVARIATE POLYNOMIALS

    XU Jia1,YAO Yong2
Author information +
文章历史 +

摘要

Vincent 定理指出: 若~\(f(x)\) 为~\(d\) 次实系数多项式, (a1, b1) 为开区间, 则多项式~\(f(x)\) 在~\((a_1,\ b_1)\) 上没有实根当且仅当存在正常数 δ, 使得对任意区间 (a, b)(a1, b1) , 当 |ab|<δ 时, 多项式 ~\((1+x)^d f(\frac{a+bx}{1+x})\) 的系数不变号\ (都是正数或都是负数). 文章的主要工作是推广这一结果到一般的多变元代数系统. 设实系数多项式 ~\(f\in \mathbb{R}[x_1,x_2, \cdots, x_n]\), f 相对于变元 xi 的次数记为 di. 记区间的笛卡尔积为 ~ I=[a1,b1]×[a2,b2]××[an,bn] (也称为Box). 记~\(\phi(I)=\max\{b_i-a_i,\ i=1,2,\cdots,n\}\). 定义 fI=(1+x1)d1(1+x2)d2(1+xn)dnf(a1+b1x11+x1,a2+b2x21+x2,,an+bnxn1+xn).fIf 相对于\ Box I 的伴随多项式. 证明了: 若多项式~\(f_1,f_2,\cdots, f_m \in \mathbb{R}[x_1,x_2,\cdots, x_n], \) 且Box \ItΛRn, 则方程组 {f1=0,f2=0,,fm=0\} 在Box \ItΛ 上没有零点, 当且仅当存在正常数 δ (与Box \ItΛ 有关), 使得 对于任意Box I\ItΛ, 当 ϕ(I)<δ 时, 伴随多项式 f1I,f2I,,fmI 中至少一个 fiI 的非零系数全是正\ (或负) 数且 fi 在Box I 的所有顶点上的值不为~0.

Abstract

Let f(x) be a real polynomial of degree d and (a1,b1) be an open interval. Vincent's Theorem indicates that there is a positive quantity δ so that for every pair of real numbers a,b ((a,b)(a1,b1)) with |ba|<δ, the polynomial of the form f(a,b)=(1+x)df(a+bx1+x) has exactly 0 variations (non-zero coefficients of f(a,b) are all positive or all negative) if and only if f(x) has no real root over the interval (a1,b1). In this paper, we generalize this result to system of multivariate polynomials. Let ~\(f\in \mathbb{R}[x_1,x_2,\cdots, x_n]\), where the degree of xi is di. Let~ I=[a1,b1]×[a2,b2]××[an,bn] be a Cartesian product of n intervals (also called Box), and let ~\(\phi(I)=\max\{b_i-a_i,\ i=1,2,\cdots,n\}\). Define fI=(1+x1)d1(1+x2)d2(1+xn)dnf(a1+b1x11+x1,a2+b2x21+x2,,an+bnxn1+xn). Here fI is called an adjoint polynomial of f relating to Box I. In this paper, we proved the following result. Let \(f_1,f_2,\cdots, f_m \in \mathbb{R}[x_1,x_2,\cdots, x_n], \) and Box \ItΛRn. Then the the system of equations {f1=0,f2=0,,fm=0\} has no zero on the Box \ItΛ, if and only if there is a positive quantity δ (relating to Box \ItΛ), such that: (i) For any Box I\ItΛ, when ϕ(I)<δ, at least one adjoint polynomial fiI has exactly 0 variations in f1I,f2I,,fmI; (ii) The value of fi corresponding to fiI is not 0 at all vertices of Box I.

关键词

Vincent 定理 / 代数系统 / 实零点.

引用本文

导出引用
徐嘉 , 姚勇. Vincent 定理的多元推广. 系统科学与数学, 2016, 36(1): 115-122. https://doi.org/10.12341/jssms12719
XU Jia , YAO Yong. A GENERALIZATION OF VINCENT'S THEOREM TO MULTIVARIATE POLYNOMIALS. Journal of Systems Science and Mathematical Sciences, 2016, 36(1): 115-122 https://doi.org/10.12341/jssms12719
中图分类号: 65H10    26C10    12E12   
PDF(315 KB)

251

Accesses

0

Citation

Detail

段落导航
相关文章

/