Vincent 定理指出: 若~\(f(x)\) 为~\(d\) 次实系数多项式, 为开区间, 则多项式~\(f(x)\) 在~\((a_1,\ b_1)\) 上没有实根当且仅当存在正常数 , 使得对任意区间 , 当 时, 多项式 ~\((1+x)^d f(\frac{a+bx}{1+x})\) 的系数不变号\ (都是正数或都是负数). 文章的主要工作是推广这一结果到一般的多变元代数系统. 设实系数多项式 ~\(f\in \mathbb{R}[x_1,x_2, \cdots, x_n]\), 相对于变元 的次数记为 . 记区间的笛卡尔积为 ~ (也称为Box). 记~\(\phi(I)=\max\{b_i-a_i,\ i=1,2,\cdots,n\}\). 定义 称 为 相对于\ Box 的伴随多项式. 证明了: 若多项式~\(f_1,f_2,\cdots, f_m \in \mathbb{R}[x_1,x_2,\cdots, x_n], \) 且Box , 则方程组 \} 在Box 上没有零点, 当且仅当存在正常数 (与Box 有关), 使得 对于任意Box , 当 时, 伴随多项式 中至少一个 的非零系数全是正\ (或负) 数且 在Box 的所有顶点上的值不为~0.
Let be a real polynomial of degree and be an open interval. Vincent's Theorem indicates that there is a positive quantity so that for every pair of real numbers with , the polynomial of the form has exactly 0 variations (non-zero coefficients of are all positive or all negative) if and only if has no real root over the interval . In this paper, we generalize this result to system of multivariate polynomials. Let ~\(f\in \mathbb{R}[x_1,x_2,\cdots, x_n]\), where the degree of is . Let~ be a Cartesian product of intervals (also called Box), and let ~\(\phi(I)=\max\{b_i-a_i,\ i=1,2,\cdots,n\}\). Define Here is called an adjoint polynomial of relating to Box . In this paper, we proved the following result. Let \(f_1,f_2,\cdots, f_m \in \mathbb{R}[x_1,x_2,\cdots, x_n], \) and Box . Then the the system of equations \} has no zero on the Box , if and only if there is a positive quantity (relating to Box ), such that: (i) For any Box , when , at least one adjoint polynomial has exactly 0 variations in ; (ii) The value of corresponding to is not 0 at all vertices of Box .