一个对流扩散问题的新的任意四边形有限元方法

石东洋,郝晓斌

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (9) : 1065-1073.

PDF(167 KB)
PDF(167 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (9) : 1065-1073. DOI: 10.12341/jssms12402
论文

一个对流扩散问题的新的任意四边形有限元方法

    石东洋1,郝晓斌2
作者信息 +

A NEW ARBITRARY QUADRILATERAL NONCONFORMING FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION PROBLEMS

    SHI Dongyang1,HAO Xiaobin2
Author information +
文章历史 +

摘要

构造了一个用于对流扩散问题的任意四边形有限元, 在任意四边形网格上得到了最优收敛阶O(h32), 这是Wilson元和类Wilson元所得不到的,这里h是趋向于0的剖分参数.

Abstract

In this paper, a new arbitrary quadrilateral nonconforming finite element method (FEM) is constructed and applied to the convection-diffusion problems. The optimal convergence result of order O(h32), which can not be obtained by the Wilson element and quasi-Wilson element for arbitrary quadrilateral meshes, is derived, where h is the subdivision parameter tending to zero.

关键词

任意四边形FEM / 对流扩散问题 / 最优误差估计.

引用本文

导出引用
石东洋 , 郝晓斌. 一个对流扩散问题的新的任意四边形有限元方法. 系统科学与数学, 2014, 34(9): 1065-1073. https://doi.org/10.12341/jssms12402
SHI Dongyang , HAO Xiaobin. A NEW ARBITRARY QUADRILATERAL NONCONFORMING FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION PROBLEMS. Journal of Systems Science and Mathematical Sciences, 2014, 34(9): 1065-1073 https://doi.org/10.12341/jssms12402
PDF(167 KB)

259

Accesses

0

Citation

Detail

段落导航
相关文章

/