半序空间中三元算子方程的可解性问题的研究

曾志芳,朱传喜

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (5) : 582-588.

PDF(243 KB)
PDF(243 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (5) : 582-588. DOI: 10.12341/jssms12325
论文

 半序空间中三元算子方程的可解性问题的研究

    曾志芳,朱传喜
作者信息 +

THE SOLVABILITY OF TRIPLED OPERATOR EQUATIONS IN PARTIALLY ORDERED SPACES

    ZENG Zhifang , ZHU Chuanxi
Author information +
文章历史 +

摘要

在完备度量空间和实Banach空间中,利用半序方法和锥理论,研究了三元混合g-单调算子方程Lx=N(x,x,x)的解的存在唯一性问题, 所得结论推广和改进了已有文献中的重要结果.

Abstract

By means of the techniques of partial order and the theory of cone, the existence and uniqueness of solution for tripled and mixed g-monotone operator equa- tion Lx = N(x, x, x) is discussed in cmplete metric spaces and real Banach spaces, respectively. The main results presented improve the corresponding results in recent literatures.

引用本文

导出引用
曾志芳,朱传喜.  半序空间中三元算子方程的可解性问题的研究. 系统科学与数学, 2014, 34(5): 582-588. https://doi.org/10.12341/jssms12325
ZENG Zhifang , ZHU Chuanxi. THE SOLVABILITY OF TRIPLED OPERATOR EQUATIONS IN PARTIALLY ORDERED SPACES. Journal of Systems Science and Mathematical Sciences, 2014, 34(5): 582-588 https://doi.org/10.12341/jssms12325
中图分类号: 47H10    60A10   
PDF(243 KB)

198

Accesses

0

Citation

Detail

段落导航
相关文章

/