• 论文 • 上一篇    下一篇

一个新的分数阶微分方程边值问题正解的存在性结果

许晓婕1,胡卫敏2   

  1. 1. 中国石油大学(华东)理学院计算与应用数学系,青岛 266555; 东北师范大学数学与统计学院,长春 130024;  2.新疆伊犁师范学院数学与统计学院,应用数学研究所,伊宁 835000
  • 出版日期:2012-05-25 发布日期:2012-08-22

许晓婕,胡卫敏. 一个新的分数阶微分方程边值问题正解的存在性结果[J]. 系统科学与数学, 2012, 32(5): 580-590.

XU Xiaojie, HU Weimin. A NEW EXISTENCE RESULT OF POSITIVE SOLUTIONS FOR A ClASS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION BOUNDARY VALUE  ROBLEMS[J]. Journal of Systems Science and Mathematical Sciences, 2012, 32(5): 580-590.

A NEW EXISTENCE RESULT OF POSITIVE SOLUTIONS FOR A ClASS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION BOUNDARY VALUE  ROBLEMS

XU Xiaojie1, HU Weimin2   

  1. 1. School of School of Science, Department of Mathematics and Computational Science,China University of Petroleum (East China), Qingdao 266555;School of Mathematics and Statistics, Northeast Normal University, Changchun 130024; 2. School of Mathematics and Statistics, Institute of Applied Mathematics, Ili Normal University,Yining 835000
  • Online:2012-05-25 Published:2012-08-22
研究了下面分数阶微分方程边值问题正解的存在性和唯一性$$ \begin{array}{l} \mbox{\boldmath$D$}_{0+}^\alpha u(t)=f(t,u(t)),\quad 0<t<1, \\ u(0)=u(1)=u'(0)u'(1)=0, \end{array}$$其中$3<\alpha\leq 4$ 是实数, $\mbox{\boldmath$D$}_{0+}^\alpha$是标准的 Riemann-Liouville微分,  $f: [0,1]\times [0, \infty)\rightarrow [0, infty)$ 连续. 首先应用压缩映像原理得到解的唯一性,其次应用不动点指数得到正解的存在性, 证明中借助了特征值理论.
In this paper, we consider the existence and uniqueness of positive solutions for a nonlinear fractional differential equation boundary-value problem D 0+u(t) = f(t, u(t)), 0 < t < 1,
u(0) = u(1) = u′(0) = u′(1) = 0,
where 3 < ≤ 4, and D 0+ is the standard Riemann-Liouville differentiation, and f : [0, 1] ×[0,∞) → [0,∞) is continuous. Firstly, the uniqueness of positive solution is obtained by useof contraction map principle. Then, some existence results of positive solutions are obtained.The proofs are based upon the reduction of the problem considered to the equivalent Fredholm integral equation of second kind.

MR(2010)主题分类: 

()
[1] 崔玉军,董升. Nagumo条件下积分边值问题的多解[J]. 系统科学与数学, 2015, 35(5): 601-610.
[2] 李平润. 在指数增长的函数类中的奇异积分方程与 Riemann 边值问题[J]. 系统科学与数学, 2015, 35(1): 99-109.
[3] 闫东明. 共振情形下周期边值问题正解的全局分歧[J]. 系统科学与数学, 2014, 34(8): 935-949.
[4] 郭丽敏,张兴秋. 穷区间上带有积分边值分数阶微分方程的多个正解的存在性[J]. 系统科学与数学, 2014, 34(6): 752-762.
[5] 陆心怡,张兴秋,王林. 一类分数阶微分方程$\bm m$点边值问题正解的存在性[J]. 系统科学与数学, 2014, 34(2): 218-230.
[6] 李小龙. 有序Banach空间中非线性二阶周期边值问题的正解[J]. 系统科学与数学, 2013, 33(7): 818-824.
[7] 邹玉梅. 一类非线性$p$-Laplace边值问题的正解[J]. 系统科学与数学, 2013, 33(7): 841-847.
[8] 李平润. 含有调和奇异算子的卷积型方程组的解法[J]. 系统科学与数学, 2013, 33(7): 854-861.
[9] 姚庆六. 奇异三阶广义右聚焦边值问题的正解[J]. 系统科学与数学, 2013, 33(4): 480-487.
[10] 刘有军,张建文,燕居让. 偶数阶带分布时滞微分方程最终有界正解的存在性[J]. 系统科学与数学, 2013, 33(10): 1243-1247.
[11] 郭肖肖,赵增勤. 非良序上下解条件下带脉冲项Sturm-Liouville边值问题的正解[J]. 系统科学与数学, 2013, 33(10): 1248-1255.
[12] 关永亮,赵增勤. 带广义${\bm p}$-Laplace算子的常微分方程两点奇异边值问题正解的存在性[J]. 系统科学与数学, 2012, 32(9): 1129-1137.
[13] 胡志刚,刘文斌,张建军. Nagumo条件下p-Laplace方程边值问题解的存在性[J]. 系统科学与数学, 2012, 32(7): 865-871.
[14] 张培国,刘立山,赵红革. 一类二阶奇异微分方程的迭代解[J]. 系统科学与数学, 2012, 32(7): 872-879.
[15] 夏峰,刘立山,王永庆. 带有积分边界条件的非线性四阶奇异微分方程组的正解[J]. 系统科学与数学, 2012, 32(4): 459-479.
阅读次数
全文


摘要