有序Banach空间中常微分方程正周期解的存在性

李小龙

系统科学与数学 ›› 2012, Vol. 32 ›› Issue (2) : 190-196.

PDF(281 KB)
PDF(281 KB)
系统科学与数学 ›› 2012, Vol. 32 ›› Issue (2) : 190-196. DOI: 10.12341/jssms11822
论文

有序Banach空间中常微分方程正周期解的存在性

    李小龙
作者信息 +

EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR ORDER DIFFERENTIAL EQUATIONS IN ORDERED BANACH SPACES

    LI Xiaolong
Author information +
文章历史 +

摘要

讨论了有序Banach空间E中的非线性常微分方程:u(t)+Mu(t)=f(t,u(t)),   tR 正~ω-周期解的存在性,其中f:R×P连续, PE中的正元锥.通过新的非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正~ω-周期解的存在性结果.

Abstract

The existence of positive !-periodic solutions for order differential equations u′(t) + Mu(t) = f(t, u(t)), ∀ t ∈ R in an ordered Banach spaces E is discussed, where f : R × P → P is continuous, and P is the cone of positive elements in E. An existence result of positive !-periodic solutions is obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.

关键词

闭凸锥 / 正~ω-周期解 / 凝聚映射 / 不动点指数

引用本文

导出引用
李小龙. 有序Banach空间中常微分方程正周期解的存在性. 系统科学与数学, 2012, 32(2): 190-196. https://doi.org/10.12341/jssms11822
LI Xiaolong. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR ORDER DIFFERENTIAL EQUATIONS IN ORDERED BANACH SPACES. Journal of Systems Science and Mathematical Sciences, 2012, 32(2): 190-196 https://doi.org/10.12341/jssms11822
中图分类号: 34G20    34C25    47H09   
PDF(281 KB)

274

Accesses

0

Citation

Detail

段落导航
相关文章

/