多维非退化扩散过程的象集与图集的一致Packing维数

杨新建

系统科学与数学 ›› 2007, Vol. 27 ›› Issue (5) : 669-675.

PDF(299 KB)
PDF(299 KB)
系统科学与数学 ›› 2007, Vol. 27 ›› Issue (5) : 669-675. DOI: 10.12341/jssms10239
论文

多维非退化扩散过程的象集与图集的一致Packing维数

    杨新建
作者信息 +

The Uniform Packing Dimensions for the Image Sets and Graph Setsof the Nondegenerate Multidimensional Diffusion Processes

    Yang Xinjian
Author information +
文章历史 +

摘要

B(t)=(B(t))=(B1(t),B2(t),,BN(t))N维Brown运动,设α(x)=(αij(x),1\leqid,1jN), β(x)=(βi(x),1id),xRd,1dN, α(x)β(x)有界连续和满足Lipchitz条件,且存在常数c0>0,使得对每个xRd, a(x)=α(x)α(x)的每个特征根都不小于c0. 设dX(t)=α(X(t))dB(t)+β(X(t))dt, 设d3.
可以证明
P(ω:DimX(E,ω)=DimGRX(E,ω)=2DimE,\qEB[0,))=1.这里 X(E,ω)={X(t,ω):tE},GRX(E,ω)={(t,X(t,ω)):tE},DimF表示F的Packing维数.

Abstract

Let X(t)=X(0)+0tα(X(s))dB(s)+0tβ(X(s))ds be a{\it{d}}-dimensional nondegenerate diffusion processes, where
B(t) is a Brownian Motion. If α(x) and β(x) are bounded continuous and satisfy Lipschitz conditions on Rd, and a(x)=α(x)α(x) is uniformly positive definite, that is, for some positive constant c0 such that\ a(x)c0Id×d, for all xRd, then we prove that when d3, one have P(ω:DimX(E,ω)=DimGRX(E,ω)=2DimE,EB[0,))=1,where {\rm Dim}F denote the Packing dimension of F for FRl(l1), and X(E,ω)={X(t,ω):tE},GRX(E,ω)={(t,X(t,ω)):tE}, ωΩ.

关键词

扩散过程 / Brown运动 / 象集 / 图集 / Packing维数.

Key words

Diffusion process / Brownian motion / image set / graph set / packing dimension.

引用本文

导出引用
杨新建. 多维非退化扩散过程的象集与图集的一致Packing维数. 系统科学与数学, 2007, 27(5): 669-675. https://doi.org/10.12341/jssms10239
Yang Xinjian. The Uniform Packing Dimensions for the Image Sets and Graph Setsof the Nondegenerate Multidimensional Diffusion Processes. Journal of Systems Science and Mathematical Sciences, 2007, 27(5): 669-675 https://doi.org/10.12341/jssms10239
中图分类号: 60J60    60J65   
PDF(299 KB)

179

Accesses

0

Citation

Detail

段落导航
相关文章

/