• 论文 • 上一篇    下一篇

关于Banach空间一阶非线性脉冲积分-微分方程初值问题解存在性的注记

谢胜利   

  1. 安徽建筑工业学院数理系, 合肥 230601
  • 收稿日期:2005-09-21 修回日期:2006-10-16 出版日期:2008-04-25 发布日期:2008-04-25

谢胜利. 关于Banach空间一阶非线性脉冲积分-微分方程初值问题解存在性的注记[J]. 系统科学与数学, 2008, 28(4): 482-489.

XIE Shengli. A Remrk on the Existence of Solutions of Initial Value Problem for First order Nonlinear Impulsive Integro-Differential Equation in Banach Space[J]. Journal of Systems Science and Mathematical Sciences, 2008, 28(4): 482-489.

A Remrk on the Existence of Solutions of Initial Value Problem for First order Nonlinear Impulsive Integro-Differential Equation in Banach Space

XIE Shengli   

  1. Department of Mathematics and Physics, Anhui University of Architecture, Hefei 230601
  • Received:2005-09-21 Revised:2006-10-16 Online:2008-04-25 Published:2008-04-25
设$m(t)\in C[J_k,{\bf R^+}](k=1,2,\cdots,m)$,且满足不等式$$m(t)\leq (L_1+L_2t)\int_0^tm(s){\rm d}s+L_3t\int_0^am(s){\rm d}s+\sum\limits_{0<t_k<t}M_km(t_k),$$其中$L_i\geq0(i=1,2,3),M_k\geq0$满足$$KaL_3\big({\rm e}^{\delta(L_1+aL_2)}-1\big)<L_1+aL_2$$ 或者$$a(2L_1+aL_2+aKL_3)<2,$$这里\begin{eqnarray*}&& \delta=\max\limits_{0\leq k\leq m}(t_{k+1}-t_k), \q %\\[1mm]
K=\inf\Big\{d\geq1:\int_0^am(s){\rm d}s\leq d\min\limits_{0\leq k\leq m}
\int_{t_k}^{t_{k+1}}m(s){\rm d}s\Big\}.\end{eqnarray*}则$m(t)=0,~t\in J$.
我们首先指出上述的下确界$K$不存在,然后在比较宽松的条件下,获得了Banach空间中一阶非线性脉冲积分--微分方程初值问题解的存在性定理,本质上改进和更正了现有的结果.
Assume that $m(t)\in C[J_k,{\bf R^+}](k=1,2,\cdots,m)$ and $$
m(t)\leq (L_1+L_2t)\int_0^tm(s){\rm d}s+L_3t\int_0^am(s){\rm d}s
+\sum\limits_{0<t_k<t}M_km(t_k),$$where $L_i\geq0(i=1,2,3),~M_k\geq0 $ satisfy either $$KaL_3\big({\rm e}^{\delta(L_1+aL_2)}-1\big)<L_1+aL_2,$$ or
$$a(2L_1+aL_2+aKL_3)<2$$ with $$\delta=\max\limits_{0\leq k\leq m}(t_{k+1}-t_k),\q K=\inf\Big\{d\geq1:\int_0^am(s){\rm d}s\leq d\min\limits_{0\leq k\leq m}\int_{t_k}^{t_{k+1}}m(s){\rm d}s\Big\}.$$
Then $m(t)=0,~t\in J$. Firstly, it is shown that the above infimum $K$ is not meaning, and then the existence theorem of solutions of initial value problems is obtained for first order nonlinear impulsive integro-differential equations in Banach spaces under some looser conditions, and hence the existing results are improved.

MR(2010)主题分类: 

()
[1] 刘炳妹, 刘立山. Banach空间二阶非线性混合型脉冲微分-积分方程的解[J]. 系统科学与数学, 2011, 31(5): 583-590.
[2] 闫宝强,高丽. 非线性项依赖于导数的二阶奇异微分方程初值问题的无界正解[J]. 系统科学与数学, 2011, 31(12): 1673-1689.
[3] 张晓燕. Banach空间中一阶非线性脉冲积分-微分方程初值问题[J]. 系统科学与数学, 2010, 30(12): 1695-1703.
[4] 王增桂;刘立山. 序Banach空间不连续脉冲积分-微分方程初值问题的解[J]. 系统科学与数学, 2008, 28(2): 197-207.
[5] 张海燕;陈芳启. BANACH空间中二阶脉冲积分-微分方程初值问题的解[J]. 系统科学与数学, 2006, 26(5): 569-577.
[6] 于立新;刘立山. Banach空间中一阶非线性脉冲积分-微分方程初值问题解的存在性[J]. 系统科学与数学, 2003, 23(2): 257-265.
[7] 刘笑颖;吴从炘. 非连续弱紧增算子的不动点及其对Banach空间初值问题的应用[J]. 系统科学与数学, 2000, 20(2): 175-180.
[8] 许跟起. Banach空间微分包含在闭集上的生存性[J]. 系统科学与数学, 1999, 19(2): 190-195.
阅读次数
全文


摘要