利用射影空间中的埃尔米特簇构作结合方案

王恺顺;张更生

系统科学与数学 ›› 2003, Vol. 23 ›› Issue (3) : 289-294.

PDF(274 KB)
PDF(274 KB)
系统科学与数学 ›› 2003, Vol. 23 ›› Issue (3) : 289-294. DOI: 10.12341/jssms09676
论文

利用射影空间中的埃尔米特簇构作结合方案

    王恺顺(1),张更生(2)
作者信息 +

GEOMETRIC CONSTRUCTION OF ASSOCIATION SCHEMES FROM HERMITIAN VARIETIES IN A FINITE PROJECTIVE SPACE

    Kai Shun WANG(1),Geng Sheng ZHANG(2)
Author information +
文章历史 +

摘要

本文把N+1维射影空间看作一个N+1维仿射空间X和一个N维无穷远超平面H的并,利用埃尔米特簇把H上的点集划分为3个子集,对X中任两点a和b,如果线ab与H的交点属于第i个子集,定义a和b属于第i个结合类,我们证明上述构作是一个结合方案,并计算出其参数.

Abstract

n this paper, we partition a protective space of dimension N + 1 into the union of an affine space X of dimension N + I and a hyperplane 'H of dimension N at infinity. The points of the hyperplane "H are partitioned into 3 subsets by hermitian variety. A pair of distinct points a, b∈ X is denned to belong to class i if the line ab meets the subset i of the hyperplane H. We prove the above configuration is an association scheme and compute its parameters.

关键词

埃尔米特簇 / 射影空间 / 结合方案

Key words

Hermitian variety / projective space / association scheme

引用本文

导出引用
王恺顺 , 张更生. 利用射影空间中的埃尔米特簇构作结合方案. 系统科学与数学, 2003, 23(3): 289-294. https://doi.org/10.12341/jssms09676
Kai Shun WANG , Geng Sheng ZHANG. GEOMETRIC CONSTRUCTION OF ASSOCIATION SCHEMES FROM HERMITIAN VARIETIES IN A FINITE PROJECTIVE SPACE. Journal of Systems Science and Mathematical Sciences, 2003, 23(3): 289-294 https://doi.org/10.12341/jssms09676
PDF(274 KB)

148

Accesses

0

Citation

Detail

段落导航
相关文章

/