四阶微分方程的迭代解

白占兵

系统科学与数学 ›› 2007, Vol. 27 ›› Issue (4) : 555-562.

PDF(278 KB)
PDF(278 KB)
系统科学与数学 ›› 2007, Vol. 27 ›› Issue (4) : 555-562. DOI: 10.12341/jssms09480
论文

四阶微分方程的迭代解

    白占兵
作者信息 +

The Iterative Solution for some Fourth-Order DifferentialEquations

    Bai Zhanbing
Author information +
文章历史 +

摘要

利用一个构造性的方法,在假设边值问题存在上解α和下解β,满足βα 的前提下, 给出了两个单调序列它们一致收敛于如下两类边值问题的极值解
u(4)(x)Mu(x)=f(x,u(x),u(x),u(x),u(x)),  0<x<1, u(0)=u(1)=u(0)=u(1)=0; u(4)(x)Mu(x)=g(x,u(x),u(x),u(x)),  0<x<1,
u(0)=u(1)=u(0)=u(1)=0.

Abstract

In this paper we describe a constructive method which yields two monotone sequences that converge uniformly to extremal solutions to the following boundary value problems u(4)(x)Mu(x)=f(x,u(x),u(x),u(x),u(x)),0<x<1, u(0)=u(1)=u(0)=u(1)=0, and u(4)(x)Mu(x)=g(x,u(x),u(x),u(x)),  0<x<1, u(0)=u(1)=u(0)=u(1)=0, if there exist an upper solution β and a lower solution α with βα.

关键词

极值原理 / 上下解 / 边值问题 / 迭代解.

Key words

Maximum principle / lower and upper solution / boundary value problem / iterative solution.

引用本文

导出引用
白占兵. 四阶微分方程的迭代解. 系统科学与数学, 2007, 27(4): 555-562. https://doi.org/10.12341/jssms09480
Bai Zhanbing. The Iterative Solution for some Fourth-Order DifferentialEquations. Journal of Systems Science and Mathematical Sciences, 2007, 27(4): 555-562 https://doi.org/10.12341/jssms09480
中图分类号: 34B15   
PDF(278 KB)

141

Accesses

0

Citation

Detail

段落导航
相关文章

/