ZHANG Weitao;FENG Dexing
Journal of Systems Science and Complexity. 1992, 5(4): 312-315.
Let \partial Ω=Γ=Γ_1+Γ_2 (see Fig.1), meas(Γ_1)>0, V={v|v∈H~1(Ω),v|Γ_1=0}, and V_0={ω|Δω=h in Ω,ω|Γ=0,\forall h∈V}. Let V_0′=the dual space of V_0,a(u,v)=∫_Ω▽u·▽Δvdx, and F(v)=∫_Ω fvdx+∫_(Γ_2)g1Δvds-∫_Γg2\partial v/{\partial \nu}ds, f∈V′_0,g1∈H~(-(1/2))(Γ_2), g2∈H~(-(3/2))(Γ). Consider the variational problem: find u ∈ V such that a(u,v)=F(v),\forall v∈V_0. (1)Using Tartar's lemma, we prove that for problem (1) there exists a unique u∈V satisfying.