• 论文 • 上一篇    下一篇

拓扑度的计算及其对超线性方程组的应用

刘笑颖(1);孙经先(2)   

  1. (1)徐州师范学院数学系;(2)山东大学数学系
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:1996-01-25 发布日期:1996-01-25

刘笑颖;孙经先. 拓扑度的计算及其对超线性方程组的应用[J]. 系统科学与数学, 1996, 16(1): 51-059.

LIU XIAO-YING;SUN JING-XIAN. COMPUTATION OF TOPOLOGICAL DEGREE AND APPLICATIONS TO SUPERLINEAR SYSTEM OF EQUATIONS[J]. Journal of Systems Science and Mathematical Sciences, 1996, 16(1): 51-059.

COMPUTATION OF TOPOLOGICAL DEGREE AND APPLICATIONS TO SUPERLINEAR SYSTEM OF EQUATIONS

LIU XIAO-YING(1);SUN JING-XIAN(2)   

  1. (1)Department of Mathematics, Xuzhou Teachers College,Jiangsu,221009;(2)Department of Mathematics, Shandong University, Jinan,250100
  • Received:1900-01-01 Revised:1900-01-01 Online:1996-01-25 Published:1996-01-25
本文利用锥理论给出了新的拓扑度计算方法.作为应用,研究了超线性积分方程组和超线性常微分方程组两点边值问题非平凡解的存在性.
A new method of computation of the topological degree is given by making use of the theory of cones in this paper.As applications, we study the existence of nontrivial solutions for superlinear system of integral equations and two-point boundary value problem of superlinear system of ordinary differential equations.
()
[1] 李志龙. 拓扑度计算定理及其应用*[J]. 系统科学与数学, 2012, 32(1): 121-128.
[2] 李志龙. 超线性奇异Neumann边值问题的非平凡解[J]. 系统科学与数学, 2010, 30(7): 998-1007.
阅读次数
全文


摘要