• • 上一篇
阮腾飞, 张三国, 申立勇
阮腾飞, 张三国, 申立勇. 基于比例优势模型的有序数据分类[J]. 系统科学与数学, 2022, 42(10): 2817-2833.
RUAN Tengfei, ZHANG Sanguo, SHEN Liyong. Ordered Data Classification Based on Proportional Odds Model[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(10): 2817-2833.
RUAN Tengfei, ZHANG Sanguo, SHEN Liyong
MR(2010)主题分类:
分享此文:
[1] Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7(2):179-188. [2] Liu I, Agresti A. The analysis of ordered categorical data:An overview and a survey of recent developments. Test, 2005, 14(1):1-73. [3] Williams J P, Grizzle R E, Williams O, et al. Analyses of contingency tables having ordered response categories. Journal of the American Statistical Association, 1972,(67):55-63. [4] Simon G. Alternative analyses for the singly-ordered contingency table. Journal of the American Statistical Association, 1974, 69(348):971-976. [5] Mccullagh P. Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society Series B (Statistical Methodology), 1980, 42(2):109-142. [6] Anderson J A, Philips P R. Regression, discrimination and measurement models for ordered categorical variables. Journal of the Royal Statistical Society, 1981, 30(1):22. [7] Potharst R, Bioch J C. Decision trees for ordinal classification. Intelligent Data Analysis, 2000, 4(2):97-111. [8] 王鑫,王熙照,陈建凯,等.有序决策树的比较研究.计算机科学与探索, 2013, 7(11):1018-1025.(Wang X, Wang X Z, Chen J K, et al. Comparative study on ordinal decision trees. Journal of Frontiers of Computer Science and Technology, 2013, 7(11):1018-1025.) [9] 王雅辉,钱宇华,刘郭庆.基于模糊优势互补互信息的有序决策树算法.计算机应用, 2021, 41(10):8.(Wang Y H, Qian Y H, Liu G Q. Ordinal decision tree algorithm based on fuzzy advantage complementary mutual information. Journal of Computer Applications, 2021, 41(10):8.) [10] Brant R. Assessing proportionality in the proportional odds model for ordinal logistic regression. Biometrics, 1990, 46(4):1171-1178. [11] Kirmani S, Gupta R. On the proportional odds model in survival analysis. Annals of the Institute of Statistical Mathematics, 2001, 53(2):203-216. [12] Tibshirani R J, Taylor J. The solution path of the generalized lasso. Annals of Statistics, 2011, 39(3):1335-1371. [13] 李根,邹国华,张新雨.高维模型选择方法综述.数理统计与管理, 2012,(4):640-658.(Li G, Zou G H, Zhang X Y. Model selection for high-dimensional data:A review. Journal of Applied Statistics and Management, 2012,(4):640-658.) [14] Breheny P, Huang J. Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors. Statistics and Computing, 2015, 25(2):173-187. [15] 李淞淋,李扬,易丹辉.有监督Group MCP方法的稳健性研究.统计与信息论坛, 2014,(6):11-17.(Li S L, Li Y, Yi D H. Robustness of the supervised group MCP in variable selection. Statistics&Information Forum, 2014,(6):11-17.) [16] Piepho H P, Ogutu J O. Regularized group regression methods for genomic prediction:Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD. BMC Proceedings, 2014, 8(5):1-9. [17] Hunter D R, Lange K. A tutorial on MM algorithms. The American Statistician, 2004, 58(1):30-37. [18] 张晶,张喆,方匡南,等.基于稀疏结构连续比率模型的消费金融风控研究.统计研究, 2020, 37(11):57-67.(Zhang J, Zhang Z, Fang K N, et al. Sparse structural continuation ratio model with its application in consumer finance risk control. Statistical Research, 2020, 37(11):57-67.) |
[1] | 于翠翠, 寇红红, 孙少龙. 基于多语言搜索引擎数据预测旅游需求研究[J]. 系统科学与数学, 2022, 42(9): 2383-2398. |
[2] | 李莉, 季鹏成, 龚炜, 赵慧, 许佳, 于青云. 复杂系统近临界态分析与调控综述[J]. 系统科学与数学, 2022, 42(6): 1423-1437. |
[3] | 张金岱. 记忆性特征驱动的成品油价格预测研究[J]. 系统科学与数学, 2022, 42(5): 1300-1313. |
[4] | 龚谊承, 王晓杰, 邹一鸣. 基于蓄水池抽样的智能医保动态风险决策及应用[J]. 系统科学与数学, 2022, 42(4): 802-817. |
[5] | 朱章鹏,陈长波. 基于机器学习的柱形代数分解变元择序[J]. 系统科学与数学, 2020, 40(8): 1492-1506. |
[6] | 牟唯嫣,王春玲,赵昕. 基于空间填充准则的交叉验证方法及其应用[J]. 系统科学与数学, 2020, 40(2): 382-388. |
[7] | 黄志刚,刘佳进,林朝颖. 基于机器学习的上市公司财报舞弊识别前沿方法比较研究[J]. 系统科学与数学, 2020, 40(10): 1882-1900. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||