• 论文 • 上一篇    下一篇

随机环境下考虑回收定价和销售定价的逆向供应链优化与协调研究

李响1,李勇建2   

  1. 1. 南开大学经济与社会发展研究院 ; 2. 南开大学商学院
  • 收稿日期:2011-05-08 出版日期:2011-11-25 发布日期:2012-03-27

李响,李勇建. 随机环境下考虑回收定价和销售定价的逆向供应链优化与协调研究[J]. 系统科学与数学, 2011, 31(11): 1511-1523.

LI Xiang , LI Yongjian. OPTIMIZATION AND COORDINATION ON REVERSE SUPPLY CHAIN WITH COLLECTION PRICING AND SELLING  IN A STOCHASTIC ENVIRONMENT[J]. Journal of Systems Science and Mathematical Sciences, 2011, 31(11): 1511-1523.

OPTIMIZATION AND COORDINATION ON REVERSE SUPPLY CHAIN WITH COLLECTION PRICING AND SELLING  IN A STOCHASTIC ENVIRONMENT

LI Xiang1 , LI Yongjian2   

  1. 1.College of Economic and Social Development,  Nankai University ; 2. Business School, Nankai University
  • Received:2011-05-08 Online:2011-11-25 Published:2012-03-27
由再制造商和分销商组成的逆向供应链中, 再制造商回收的废旧产品数量是与回收价格相关的随机变量, 分销商面临的再制造产品需求是与销售价格相关的随机变量. 再制造商决策回收价格并向分销商提供合同, 分销商基于合同作出反应来决策订购数量和销售价格,目标是在随机回收和随机需求下最大化各自的期望利润.利用博弈论和优化理论, 分别得到了分散式和集中式供应链系统下的最优决策, 证明了分散式系统中的回收价格和再制造数量偏低而销售价格偏高, 并提出了综合三种基本合同的供应链协调机制.最后通过数值仿真得到了系统参数对供应链决策和利润的影响.
In a reverse supply chain consisting of a remanufacturer and a distributor,the collection quantity of used product for the remanufacturer is stochastic and sensitive to the collection price, and the demand of remanufactured product for the distributor is stochastic and sensitive to the selling price. The remanufacturer first determines the collection price and proposes a payment contract to the distributor, and then the distributor reacts to determine the order quantity and selling price based on the contract. Both parties seek to maximize their own expected profits, respectively. In this paper,the optimal decentralized and centralized decisions are derived by game theory and optimization theory. It is shown that the collection price and remanufacturing quantity are lower and the selling price is higher in decentralized system than those in the centralized system, and a coordination scheme that combines three basic contracts is propsed.  Finally, the impacts of system parameters to the supply chain decisions and profits are obtaind by numerical study.

MR(2010)主题分类: 

()
[1] 吴江, 杜亚倩, 张聊东. 考虑产品绿色度的双渠道供应链博弈分析与协调[J]. 系统科学与数学, 2021, 41(8): 2276-2291.
[2] 王莹莉. 基于混合CVaR的供应链回购策略优化与协调研究[J]. 系统科学与数学, 2015, 35(11): 1304-1315.
[3] 禹海波,周端. 过度自信零售商供应链的得失共享回购契约模型[J]. 系统科学与数学, 2015, 35(1): 121-128.
[4] 梅生伟,魏韡. 智能电网环境下主从博弈模型及应用实例[J]. 系统科学与数学, 2014, 34(11): 1331-1344.
[5] 肖成勇,王谦. 供应链协调中供应商的价格歧视策略[J]. 系统科学与数学, 2013, 33(7): 785-798.
[6] 卢强,梅生伟. 现代电力系统控制评述---清华大学电力系统国家重点实验室相关科研工作缩影及展望[J]. 系统科学与数学, 2012, 32(10): 1207-1225.
[7] 肖成勇,王谦. 两层次广告博弈中供应商的一种]批发价协调策略[J]. 系统科学与数学, 2011, 31(11): 1504-1510.
[8] 杨丰梅, 成雅娜, 李健. 基于奖惩契约的闭环供应链协调性研究[J]. 系统科学与数学, 2011, 31(10): 1250-1258.
[9] 张海青, 田军. 采购方主导的基于能力期权契约的应急物资采购模型[J]. 系统科学与数学, 2011, 31(10): 1317-1327.
[10] 李健, 王伟, 杨丰梅. 基于三方回购契约的供应链库存调度协调研究[J]. 系统科学与数学, 2011, 31(10): 1363-1374.
[11] 曹二保;赖明勇. 基于需求和生产成本偏差的Cournot竞争供应链协调[J]. 系统科学与数学, 2010, 30(10): 1313-1322.
[12] 王龙;伏锋;陈小杰;楚天广;谢广明. 演化博弈与自组织合作[J]. 系统科学与数学, 2007, 27(3): 330-343.
阅读次数
全文


摘要