排序集抽样下分布函数的非参数核估计

张良勇, 董晓芳, 樊祥嘉

系统科学与数学 ›› 2024, Vol. 44 ›› Issue (8) : 2536-2547.

PDF(405 KB)
PDF(405 KB)
系统科学与数学 ›› 2024, Vol. 44 ›› Issue (8) : 2536-2547. DOI: 10.12341/jssms240067

排序集抽样下分布函数的非参数核估计

    张良勇, 董晓芳, 樊祥嘉
作者信息 +

Nonparametric Kernel Estimation of Distribution Function Under Ranked Set Sampling

    ZHANG Liangyong, DONG Xiaofang, FAN Xiangjia
Author information +
文章历史 +

摘要

排序集抽样方法适用于样本测量困难但排序容易的场合, 已被广泛应用于临床医学、生态环境、农林业等领域. 分布函数是概率统计中一个重要函数, 为了提高未知总体分布函数的估计效率, 文章基于排序集抽样方法, 采用核估计思想和平均秩方法, 构建了分布函数的非参数估计量, 证明了其具有渐近无偏性、相合性和一致强相合性. 估计效率通过估计量的积分均方误差来进行评价, 渐近相对效率和模拟相对效率的研究结果表明: 新建估计量的估计效率高于简单随机抽样下相应估计量, 并且随着样本量的减小, 新建估计量的相对优势越明显. 最后, 针叶树数据的应用结果进一步验证了理论研究结果的正确性.

Abstract

The ranked set sampling method is suitable for the situation where the sample measurement is difficult but the ranking is easy, and has been widely applied in clinical medicine, ecological environment, agriculture and forestry, and other fields. The distribution function is an important function in probability statistics. In order to improve the estimation efficiency of the distribution function of an unknown population, this paper adopts the kernel estimation idea and the average rank method to construct a nonparametric estimator of the distribution function based on the ranked set sampling method. The new estimator is shown to have asymptotic unbiasedness, consistency, and uniformly strong consistency. The estimation efficiency is evaluated by the mean integrated square error of the estimator. The research results of asymptotic relative efficiency and simulated relative efficiency show that the estimation efficiency of the new estimator is higher than that of the corresponding estimator under simple random sampling, and as the sample size decreases, the relative advantage of the new estimator becomes more apparent. Finally, the application results of coniferous tree data further verify the correctness of the theoretical research results.

关键词

排序集抽样 / 分布函数 / 非参数核估计 / 积分均方误差

Key words

Ranked set sampling / distribution function / nonparametric kernel estimation / mean integrated square error

引用本文

导出引用
张良勇 , 董晓芳 , 樊祥嘉. 排序集抽样下分布函数的非参数核估计. 系统科学与数学, 2024, 44(8): 2536-2547. https://doi.org/10.12341/jssms240067
ZHANG Liangyong , DONG Xiaofang , FAN Xiangjia. Nonparametric Kernel Estimation of Distribution Function Under Ranked Set Sampling. Journal of Systems Science and Mathematical Sciences, 2024, 44(8): 2536-2547 https://doi.org/10.12341/jssms240067
中图分类号: 62F07    62G05   

参考文献

[1] MacEachern S N, Ozturk O, Wolfe D A, et al. A new ranked set sample estimator of variance. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2002, 64(2): 177-188.
[2] Wang X L, Lim J, Stokes L. Using ranked set sampling with cluster randomized designs for improved inference on treatment effects. Journal of the American Statistical Association, 2016, 111(516): 1576-1590.
[3] 陈蒙, 陈望学, 邓翠红, 等. 排序集抽样下Inverse Rayleigh分布的Fisher信息量及其在参数估计中的应用. 系统科学与数学, 2022, 42(1): 141-152. (Chen M, Chen W X, Deng C H, et al. Fisher information for Inverse Rayleigh distribution in ranked set sampling with application to parameter estimation. Journal of Systems Science and Mathematical Sciences, 2022, 42(1): 141-152.)
[4] 周雅雯, 陈望学, 邓翠红, 等. 三种抽样设计下Inverse Exponential分布中参数的优良估计. 系统科学与数学, 2023, 43(4): 1069-1080. (Zhou Y W, Chen W X, Deng C H, et al. Optimal estimation of the parameter of Inverse Exponential distribution under three sampling designs. Journal of Systems Science and Mathematical Sciences, 2023, 43(4): 1069-1080.)
[5] 蔡光辉, 吴志敏. 完美和非完美两阶段排序集抽样下几类正态性检验的功效与AUC研究. 系统科学与数学, 2023, 43(1): 227-243. (Cai G H, Wu Z M. Efficiency and AUCs of tests for normality under perfect and imperfect double ranked set sampling design. Journal of Systems Science and Mathematical Sciences, 2023, 43(1): 227-243.)
[6] 董晓芳, 张良勇. 排序集抽样下系统可靠度的非参数估计. 系统科学与数学, 2023, 43(6): 1635-1646. (Dong X F, Zhang L Y. Nonparametric estimation of system reliability under ranked set sampling. Journal of Systems Science and Mathematical Sciences, 2023, 43(6): 1635-1646.)
[7] Chen Z. Ranked set sampling: Its essence and some new applications. Environmental and Ecological Statistics, 2007, 14(4): 355-363.
[8] Bouza C N. Ranked set sampling and randomized response procedures for estimating the mean of a sensitive quantitative character. Metrika, 2009, 70(3): 267-277.
[9] Yu P L, Tam C Y. Ranked set sampling in the presence of censored data. Environmetrics, 2002, 13(4): 379-396.
[10] Bocci C, Petrucci A, Rocco E. Ranked set sampling allocation models for multiple skewed variables: An application to agricultural data. Environmental and Ecological Statistics, 2010, 17(3): 333-345.
[11] Nawaz T, Han D. Monitoring the process location by using new ranked set sampling based memory control charts. Quality Technology and Quantitative Management, 2020, 17(3): 255- 284.
[12] Al-Omari A I, Almanjahie I M. New improved ranked set sampling designs with an application to real data. Computers, Materials and Continua, 2021, 67(2): 1503-1522.
[13] Irfan A, Muhammad N, Muhammad H, et al. Memory type ratio and product estimators under ranked-based sampling schemes. Communications in Statistics-Theory and Methods, 2023, 52(4): 1155-1177.
[14]茆诗松, 周纪芗. 概率论与数理统计(第三版). 北京: 中国统计出版社, 2017. (Mao S S, Zhou J X. Probability Theory and Mathematical Statistics. Third Edition. Beijing: China Statistics Press, 2017.)
[15] Nadaraya E A. Some new estimates for distribution functions. Theory of Probability and Its Applications, 1964, 9: 497-500.
[16] Azzalini A. A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika, 1981, 68(1): 326-328.
[17] Liu R, Yang L. Kernel estimation of multivariate cumulative distribution function. Journal of Nonparametric Statistics, 2008, 20(8): 661-677.
[18] Chacon J E, Rodriguez-Casal A. A note on the universal consistency of the kernel distribution function estimator. Statistics and Probability Letters, 2010, 80(17-18): 1414-1419.
[19] Mason D M, Swanepoel J W H. A general result on the uniform in bandwidth consistency of kernel-type function estimators. Test, 2011, 20(1): 72-94.
[20] Tenreiro C. A note on boundary kernels for distribution function estimation. Statistics, 2015, 11(2): 169-190.
[21] Chen Z H, Bai Z D, Sinha B K. Ranked Set Sampling-Theory and Application. New York: Springer, 2003.
[22] 杨善朝. 现代非参数统计. 北京: 科学出版社, 2021. (Yang S Z. Modern Nonparametric Statistics. Beijing: Science Press, 2021.)
[23] Dell T R, Clutter J L. Ranked set sampling theory with order statistics background. Biometrics, 1972, 28(2): 545-555.

基金

河北省教育厅科学研究项目(ZD2022062)资助课题.
PDF(405 KB)

148

Accesses

0

Citation

Detail

段落导航
相关文章

/