Meta分析中的Mallows模型平均估计

刘苏杭, 王惠媛, 李新民

系统科学与数学 ›› 2024, Vol. 44 ›› Issue (11) : 3455-3465.

PDF(409 KB)
PDF(409 KB)
系统科学与数学 ›› 2024, Vol. 44 ›› Issue (11) : 3455-3465. DOI: 10.12341/jssms23585

Meta分析中的Mallows模型平均估计

    刘苏杭, 王惠媛, 李新民
作者信息 +

Mallows Model Averaging in Meta-Analysis

    LIU Suhang, WANG Huiyuan, LI Xinmin
Author information +
文章历史 +

摘要

Meta分析是一种通过对多个独立研究结果进行系统的整合、分析和综合,以得出更为准确、全面的结论的统计方法.在Meta分析的预测过程中,为了解决模型选择存在的不确定性问题,文章提出了一种基于Mallows准则的模型平均(MMA)方法,并证明了其具有渐近最优性.最后,对文章所提出的MMA估计与Jackknife模型平均(JMA)、S-AIC和S-BIC信息准则下的模型平均估计进行了模拟研究,并应用于卡介苗疫苗数据的实例分析,结果均表明MMA优于其他模型平均估计.

Abstract

Meta-analysis is a statistical method that systematically integrates, analyzes and synthesizes the results of multiple independent studies to reach more accurate and comprehensive conclusions. To solve model uncertainty in the prediction for meta-analysis, an optimal model averaging prediction method is proposed based on Mallows criterion, and the optimality of Mallows model averaging(MMA) estimator under square loss is discussed. Finally, simulation studies are conducted to evaluate and compare the performance of MMA, Jackknife model average(JMA), S-AIC and S-BIC model average estimation under information criteria, and all methods are applied to analyze the data set of BCG vaccine for illustration. The results show that the MMA estimation is superior to other model average estimations in prediction regardless of whether the variance and sample size are large or small.

关键词

Meta分析 / 模型平均 / Mallows准则 / 渐近最优性

Key words

Meta-analysis / model averaging / Mallows criterion / asymptomatic optimality

引用本文

导出引用
刘苏杭 , 王惠媛 , 李新民. Meta分析中的Mallows模型平均估计. 系统科学与数学, 2024, 44(11): 3455-3465. https://doi.org/10.12341/jssms23585
LIU Suhang , WANG Huiyuan , LI Xinmin. Mallows Model Averaging in Meta-Analysis. Journal of Systems Science and Mathematical Sciences, 2024, 44(11): 3455-3465 https://doi.org/10.12341/jssms23585
中图分类号: 62F10    62F12    62P10   

参考文献

[1] Gumedze F N, Jackson D. A random effects variance shift model for detecting and accommodating outliers in meta-analysis. BMC Medical Research Methodology, 2011, 11(1): 1-9.
[2] 郑凤英, 彭少麟. 捕食关系的 Meta 分析. 生态学报, 1999, 19(4): 448-452. (Zheng F Y, Peng S L. The Meta analysis on the relationships between predator and prey. Acta Ecologica Sinica, 1999, 19(4): 448-452.)
[3] Ginsberg A M. The tuberculosis epidemic. Scientific challenges and opportunities. Public Health Reports, 1998, 113(2): 128-136.
[4] Leung G, Barron A R. Information theory and mixing least-squares regressions. IEEE Transactions on Information Theory, 2006, 52(8): 3396-3410.
[5] Yuan Z, Yang Y. Combining linear regression models: When and how?. Journal of the American Statistical Association, 2005, 100(472): 1202-1214.
[6] 张新雨, 邹国华. 模型平均方法及其在预测中的应用. 统计研究, 2011, 28(6): 97-102. (Zhang X Y, Zou G H. Model averaging method and its application in forecast. Statistical Research, 2011, 28(6): 97-102.)
[7] Eris M N, Ulasan B. Trade openness and economic growth: Bayesian model averaging estimate of cross-country growth regressions. Economic Modelling, 2013, 33(2): 867-883.
[8] 乔鸽, 周建红, 李新民. 广义线性模型下模型平均的比较研究. 系统科学与数学, 2021, 41(4): 1164-1180. (Qiao G, Zhou J H, Li X M. A Comparative study of model averaging for generalized linear models. Journal of Systems Science and Mathematical Sciences, 2021, 41(4): 1164-1180.)
[9] Buckland S T, Burnham K P, Augustin N H. Model selection: An integral part of inference. Biometrics, 1997, 2(53): 603-618.
[10] Hansen B E, Racine J S. Jackknife model averaging. Journal of Econometrics, 2012, 167(1): 38-46.
[11] Zhang X, Wan A T K, Zou G. Model averaging by Jackknife criterion in models with dependent data. Journal of Econometrics, 2013, 174(2): 82-94.
[12] Liang H, Zou G, Wan A T K, et al. Optimal weight choice for frequentist model average estimators. Journal of the American Statistical Association, 2011, 106(495): 1053-1066.
[13] Wang J, He J, Liang H, et al. Optimal model average prediction in orthogonal Kriging models. Journal of Systems Science & Complexity, 2024, 37(3): 1080-1099.
[14] Li X, Zou G, Zhang X, et al. Least squares model averaging based on generalized cross validation. Acta Mathematicae Applicatae Sinica, 2021, 37(3): 495-509.
[15] Hansen B E. Least squares model averaging. Econometrica, 2007, 75(4): 1175-1189.
[16] Wan A T K, Zhang X, Zou G. Least squares model averaging by Mallows criterion. Journal of Econometrics, 2010, 156(2): 277-283.
[17] Liu Q F, Okui R. Heteroscedasticity-robust Cp model averaging. The Econometrics Journal, 2013, 16(3): 463-472.
[18] Zhu R, Wan A T K, Zhang X. A Mallows-type model averaging estimator for the varyingcoefficient partially linear model. Journal of the American Statistical Association, 2019, 114(526): 882-892.
[19] Liang Z, Chen X, Zhou Y. Mallows model averaging estimation for linear regression model with right censored data. Acta Mathematicae Applicatae Sinica, English Series, 2022, 38(1): 5-23.
[20] Lunn D, Barrett J, Sweeting M. Fully Bayesian hierarchical modelling in two stages, with application to Meta-analysis. Journal of the Royal Statistical Society Series C: Applied Statistics, 2013, 62(4): 551-572.
[21] Seide S E, Röver C, Friede T. Likelihood-based random-effects meta-analysis with few studies: Empirical and simulation studies. BMC Medical Research Methodology, 2019, 19(16): 1-14.
[22] 尹潇潇, 鲁筠, 石磊. Meta 分析中的频率模型平均估计. 数理统计与管理, 2021, 40(2): 233-241. (Yin X X, Lu J, Shi L. Frequentist model averaging in Meta-analysis. Journal of Applied Statistics and Management, 2021, 40(2): 233-241.)
[23] Viechtbauer W, Cheung M W L. Outlier and influence diagnostics for Meta-analysis. Research Synthesis Methods, 2010, 1(2): 112-125.
[24] Sidik K, Jonkman J N. A comparison of heterogeneity variance estimators in combining results of studies. Statistics in Medicine, 2007, 26(9): 1964-1981.
[25] Colditz G A, Brewer T F, Berkey C S, et al. Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature. Journal of the American Medical Association, 1994, 271(9): 698-702.
[26] Fleiss J L, Berlin J A. Effect sizes for dichotomous data. The Handbook of Research Synthesis and Meta-Analysis, 2009, 2: 237-253.

基金

国家社会科学基金(23BTJ064)资助课题.
PDF(409 KB)

405

Accesses

0

Citation

Detail

段落导航
相关文章

/