模糊厌恶视角下具有通货膨胀影响的鲁棒最优再保险和投资

杨鹏

系统科学与数学 ›› 2024, Vol. 44 ›› Issue (1) : 164-178.

PDF(573 KB)
PDF(573 KB)
系统科学与数学 ›› 2024, Vol. 44 ›› Issue (1) : 164-178. DOI: 10.12341/jssms23498

模糊厌恶视角下具有通货膨胀影响的鲁棒最优再保险和投资

    杨鹏
作者信息 +

Robust Optimal Reinsurance and Investment with Inflation Influence from the Perspective of Ambiguity Aversion

    YANG Peng
Author information +
文章历史 +

摘要

文章在同时考虑模糊厌恶和通货膨胀风险下,研究鲁棒最优再保险和投资问题.保险公司的盈余过程通过扩散逼近模型定义,金融市场由一个无风险资产和风险资产组成.保险公司通过采取比例再保险减少索赔风险,通过在金融市场投资增加财富.通过通货膨胀对风险资产价格进行折算,得到通货膨胀对投资的影响.利用Radon-Nikodym导数和Girsanov定理,得到模糊厌恶下,保险公司的财富过程.以期望效用最大化为目标,得到鲁棒最优再保险和投资策略的解析解.最后,通过数值实验探讨模型参数对所得理论结果的影响,研究结果可以有效地指导保险公司的再保险和投资决策.

Abstract

This paper studies the robust optimal reinsurance and investment problem under the ambiguity aversion and inflation risks are considered, simultaneously. The surplus process of an insurance company is defined by the diffusion approximation model, and the financial market consists of a risk-free asset and a risky asset. The insurance company can reduce the risk of claims by adopting proportional reinsurance and increase his wealth by investing in the financial market. The price of the risky asset is converted by inflation, and then the influence of inflation on investment is obtained. By using Radon-Nikodym derivative and Girsanov theorem, the wealth process of the insurance company under ambiguity aversion is obtained. With the goal of maximizing expected utility, the analytical solution of robust optimal reinsurance and investment strategy is obtained. Finally, the influence of model parameters on the theoretical results is discussed through numerical experiments, and the research results can effectively guide the reinsurance and investment decisions of the insurance company.

关键词

模糊厌恶 / 通货膨胀 / 再保险 / 投资 / 随机控制

Key words

Ambiguity aversion / inflation / reinsurance / investment / stochastic control

引用本文

导出引用
杨鹏. 模糊厌恶视角下具有通货膨胀影响的鲁棒最优再保险和投资. 系统科学与数学, 2024, 44(1): 164-178. https://doi.org/10.12341/jssms23498
YANG Peng. Robust Optimal Reinsurance and Investment with Inflation Influence from the Perspective of Ambiguity Aversion. Journal of Systems Science and Mathematical Sciences, 2024, 44(1): 164-178 https://doi.org/10.12341/jssms23498
中图分类号: 62P05    91B28    93E20   

参考文献

[1] Anderson E W, Hansen L P, Sargent T J. A quartet of semi-groups for model specification, robustness, prices of risk, and model detection. Journal of the European Economic Association, 2003, 1(1):68-123.
[2] Maenhout P J. Robust portfolio rules and asset pricing. Review of Financial Studies, 2004, 17(4):951-983.
[3] 江五元, 杨招军. 保险与再保险及市场对冲稳健均衡策略. 系统科学与数学, 2023, 43(5):1331-1345. (Wang W Y, Yang Z J. Robust equilibrium strategies for insurance and reinsurance with market hedging. Journal of Systems Science and Mathematical Sciences, 2023, 43(5):1331-1345.)
[4] 慕蕊, 马世霞, 张欣茹. 相依风险模型下具有延迟和违约风险的鲁棒最优投资和再保险策. 数学杂志, 2022, 42(4):300-314. (Mu R, Ma S X, Zhang X R. Robust optimal investment and reinsurance strategies with delay and default risk under dependent risk model. Journal of Mathematics, 2022, 42(4):300-314.)
[5] 杨鹏. 竞争与合作统一框架下的鲁棒最优再保险策略. 系统科学与数学, 2023, 43(5):1260-1275. (Yang P. Robust optimal reinsurance strategy under the unified framework of competition and cooperation. Journal of Systems Science and Mathematical Sciences, 2023, 43(5):1260-1275.)
[6] Chen Z, Yang P. Robust optimal reinsurance-investment strategy with price jumps and correlated claims. Insurance:Mathematics and Economics, 2020, 92:27-46.
[7] Yang P. Robust optimal reinsurance strategy with correlated claims and competition. AIMS Mathematics, 2023, 8(7):15689-15711.
[8] 张金清, 尹亦闻. 模糊厌恶下股指期货风险对冲策略设计及实证分析. 金融研究, 2022, 503(5):170-188. (Zhang J Q, Yin Y W. A theoretical and empirical analysis of portfolio hedging steategy with stock index futures under ambiguity aversion. Journal of Financial Research, 2022, 503(5):170-188.)
[9] 方彤, 尹力博. 通货膨胀全球联动效应及其影响因素——基于经济体内部实现环境的视角. 经济体制改革, 2023, 241(4):168-175. (Fang T, Yin L B. The effects of global inflation co-movement and its influential factors:A perspective from the domestic realized environment of economies. Reform of Economic System, 2023, 241(4):168-175.)
[10] 邱亦霖, 梁斯. 通货膨胀表现形式的变化、主要原因及建议. 西南金融, 2022, 496(11):3-16. (Qiu Y L, Liang S. Changes in the manifestation of inflation, main causes, and suggestions. Southwest Finance, 2022, 496(11):3-16.)
[11] 季锟鹏, 彭幸春. 考虑通胀风险与最低绩效保障的损失厌恶型保险公司的最优投资与再保险策略. 数学物理学报, 2022, 42(4):1265-1280. (Ji K P, Peng X C. Optimal investment and reinsurance strategies for loss-averse insurer considering inflation risk and minimum performance guarantee. Acta Mathematica Scientia, 2022, 42(4):1265-1280.)
[12] 杨鹏. 通货膨胀影响下基于随机微分博弈的最优再保险和投资. 应用概率统计, 2016, 32(2):147-156. (Yang P. Optimal reinsurance and investment for stochastic differential games with inflation influence. Chinese Journal of Applied Probability and Statistics, 2016, 32(2):147-156.)
[13] 姚海祥, 伍慧玲, 曾燕. 不确定终止时间和通货膨胀影响下风险资产的最优投资策略. 系统工程理论与实践, 2014, 34(5):1089-1099. (Yao H X, Wu H L, Zeng Y. Optimal investment strategy for risky assets under uncertain time-horizon and inflation. Systems Engineering—Theory & Practice, 2014, 34(5):1089-1099.)
[14] Li D, Rong X, Zhao H. Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk. Insurance:Mathematics and Economics, 2015, 64:28-44.
[15] 肖时松. 通货膨胀对股票收益影响的实证研究. 博士论文. 湖南大学,长沙, 2020. (Xiao S S. Some empirical essays about the effect of inflation on stock returns. PhD Thesis. Hunan University, Changsha, 2020.)
[16] 张明. 通货膨胀下公司的投融资行为研究. 博士论文. 东华大学,上海, 2014. (Zhang M. The study of corporate investment and financing behavior under inflation. PhD Thesis. Donghua University, Shanghai, 2014.)
[17] 丁传明, 邹捷中. 考虑通货膨胀影响的最优消费投资模型. 中南大学学报(自然科学版), 2004, 35(1):167-170. (Ding C M, Zou J Z. Optimal consumption and investment model considering effect of currency inflation. Journal of Central South University(Science and Technology), 2004, 35(1):167-170.)
[18] Mataramvura S, Øksendal B. Risk minimizing and HJBI equations for stochastic differential games. Stochastics, 2008, 80(4):317-337.
[19] Barberis N, Greenwood R, Jin L, et al. X-CAPM:An extrapolative capital asset pricing model. Journal of Financial Economics, 2015, 115(1):1-24.

基金

陕西省自然科学基础研究计划资助项目(2023-JC-YB-002)和教育部人文社会科学研究西部和边疆地区项目青年基金(21XJC910001)资助课题.
PDF(573 KB)

Accesses

Citation

Detail

段落导航
相关文章

/