• • 上一篇    

基于投入占用产出模型和SDA方法的数字经济影响就业机理研究

马新平1, 杨志超2, 郭秋怡3   

  1. 1. 中国科学院大学经济与管理学院, 北京 100190;
    2. 中国交通建设集 团有限公司, 北京 100088;
    3. 军事科学院战略评估咨询中心, 北京 100091
  • 收稿日期:2022-10-18 修回日期:2022-11-14 发布日期:2023-05-18
  • 通讯作者: 郭秋怡, Email:qyguo96@163.com
  • 基金资助:
    国家自然科学基金应急管理项目(L1724043),中央网信办专家委重大课题(2022zjwwa01)资助课题.

马新平, 杨志超, 郭秋怡. 基于投入占用产出模型和SDA方法的数字经济影响就业机理研究[J]. 系统科学与数学, 2023, 43(4): 858-869.

MA Xinping, YANG Zhichao, GUO Qiuyi. Study on Employment Impact of Digital Economy Based on Input Occupancy Output Model and SDA Method[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(4): 858-869.

Study on Employment Impact of Digital Economy Based on Input Occupancy Output Model and SDA Method

MA Xinping1, YANG Zhichao2, GUO Qiuyi3   

  1. 1. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190;
    2. China Communications Construction Company Limited, Beijing 100088;
    3. Consulting Center for Strategic Assessment of Military Science, Beijing 100091
  • Received:2022-10-18 Revised:2022-11-14 Published:2023-05-18
随着数字经济的快速发展,数字经济领域吸纳的就业规模不断扩大,对中国实现更高质量就业和共同富裕产生重要影响.结合中国区域经济发展不均衡的现状,针对区域层面、尤其是边疆欠发达地区开展数字经济对就业的影响机理研究,对于在新时期实施就业优先战略具有重要意义.文章构建了反映区域数字经济特点的不区分进口就业投入占用产出模型,并运用结构分解方法深入分析就业变化,为深入研究分析区域数字经济发展对就业的影响机理提供理论支持;以新疆为例实证分析了数字经济对就业的影响效应,表明新疆数字经济产业的发展能够带动更多其他行业的就业增长,尤其是在消费、投资、出口、国内省外流出、技术变迁方面,数字经济的发展已经成为促进新疆就业增长的重要动力源,对于在新时期实施就业优先战略,确保边疆巩固、边疆发展和边境安全具有重要理论和实践价值.
With the rapid development of digital economy, the scale of employment absorbed in the field of digital economy continues to expand, which has an important impact on China’s realization of higher quality employment and common prosperity. Based on the current situation of unbalanced regional economic development in China, it is of great significance to carry out research on the impact mechanism of digital economy on employment at the regional level, especially in the underdeveloped border areas, for the implementation of the employment priority strategy in the new era. This paper constructs an input occupation output model of undifferentiated import employment that reflects the characteristics of regional digital economy, and uses structural decomposition method to deeply analyze employment changes, providing theoretical support for in-depth research and analysis of the impact mechanism of regional digital economy development on employment. Taking Xinjiang as an example, this paper empirically analyzes the impact of digital economy on employment, indicating that the development of Xinjiang’s digital economy industry can drive employment growth in more other industries, especially in consumption, investment, exports, inland outflows, and technological changes. The development of digital economy has become an important power source to promote employment growth in Xinjiang. It has important theoretical and practical value for the implementation of the employment priority strategy in the new era and for ensuring the consolidation, development and security of the border areas.

MR(2010)主题分类: 

()
[1] 张瑜, 杨翠红. 基于DPN模型的我国就业增长影响因素分析.管理评论, 2022, 34(4):44-51. (Zhang Y, Yang C H. Analysis of the determinants of China's employment growth based on DPN model. Management Review, 2022, 34(4):44-51.)
[2] 高翔, 田开兰, 杨翠红. 从供给侧探寻我国就业变化成因. 管理评论, 2018, 30(5):187-196. (Gao X, Tian K L, Yang C H. Exploring the determinants of employment changes from the supply side. Management Review, 2018, 30(5):187-196.)
[3] Beham B, Prag P, Drobnic S. Who's got the balance? A study of satisfaction with the workfamily balance among part-time service sector employees in five Western European countries. International Journal of Human Resource Management, 2012, (18):3725-3741.
[4] Katz R L, Vaterlaus S, Zenhausern P, et al. The impact of broadband on jobs and the German economy. Intereconomics, 2010, (1):26-34.
[5] Rausas M P, Manyika J, Hazan E, et al. Internet matters:The net's sweeping impact on growth, jobs, and prosperity, 2018, https://www.mckinsey.com/industries/high-tech/our-insights/internet-matters.
[6] Elsby M W L, Shapiro M D. Why does trend growth affect equilibrium employment? A new explanation of an old puzzle. American Economic Review, 2012, 102(4):1378-1413.
[7] Autor D, Dorn D, Hanson G H. Untangling trade and technology:Evidence from local labor markets. The Economic Journal, 2015, 125(584):621-646.
[8] 戚聿东, 刘翠花, 丁述磊. 数字经济发展,就业结构优化与就业质量提升. 经济学动态, 2020, (11):17-35. (Qi Y D, Liu C H, Ding S L. Digital economic development, employment structure optimization and employment quality upgrading. Economic Perspectives, 2020, (11):17-35.)
[9] 王君, 张于#
[17], 张义博, 等. 人工智能等新技术进步影响就业的机理与对策. 宏观经济研究, 2017, (10):169-181. (Wang J, Zhang Y Z, Zhang Y B, et al. The mechanism and countermeasures of new technological progress such as artificial intelligence affecting employment. Macroeconomics, 2017, (10):169- 181.)
[10] 牛禄青. 数字经济对就业的影响.新经济导刊, 2017, (10):28-33. (Niu L Q. The impact of digital economy on employment. New Economy Weekly, 2017, (10):28-33.)
[11] 张影强, 张瑾. 如何促进数字经济创造就业. 中国经济报告, 2017, (5):43-45. (Zhang Y Q, Zhang J. How to promote digital economy to create employment. China Policy Review, 2017, (5):43-45.)
[12] 胡拥军, 关乐宁. 数字经济的就业创造效应与就业替代效应探究. 改革, 2022, (4):42-54. (Hu Y J, Guan L N. Research on employment creation effect and employment substitution effect of digital economy. Reform, 2022, (4):42-54.)
[13] 于晓龙. 我国新型技术进步的就业效应研究. 博士论文.中共中央党校, 北京, 2015. (Yu X L. Research on the employment effect of new technological progress in china. Doctor Thesis. Party School of the CPC Central Committee, Beijing, 2015.)
[14] 李舒沁, 王灏晨, 汪寿阳. 人工智能背景下制造业劳动力结构影响研究——以工业机器人发展为例. 管理评论, 2021, 33(3):307-314. (Li S Q, Wang H C, Wang S Y. Research on the factors that influence the labor structure of the manufacturing industry in the context of Artificial Intelligence-Taking the development of industrial robots as an example. Management Review, 2021, 33(3):307-314.)
[15] 毛宇飞, 曾湘泉, 祝慧琳. 互联网使用,就业决策与就业质量——基于CGSS数据的经验证据. 经济理论与经济管理, 2019, (1):72-85. (Mao Y F, Zeng X Q, Zhu H L. Internet use, employment decision and employment quality-Empirical evidence from CGSS data. Economic Theory and Business Management, 2019, (1):72-85.)
[16] 夏炎, 王会娟, 张凤, 等. 数字经济对中国经济增长和非农就业影响研究——基于投入占用产出模型. 中国科学院院刊, 2018, 33(7):707-716. (Xia Y, Wang H J, Zhang F, et al. Impact of digital economy on China's economic and non-agricultural employment-Based on input-occupancy-output model. Bulletin of Chinese Academy of Sciences, 2018, 33(7):707-716.)
[17] 谢萌萌, 夏炎, 潘教峰, 等. 人工智能、技术进步与低技能就业——基于中国制造业企业的实证研究. 中国管理科学, 2020, 28(12):54-66. (Xie M M, Xia Y, Pan J F, et al. Artificial intelligence, technological change and low-skill employment-Empirical evidence from Chinese manufacturing firms. Chinese Journal of Management Science, 2020, 28(12):54-66.)
[18] 何宗樾, 宋旭光. 数字经济促进就业的机理与启示——疫情发生之后的思考. 经济学家, 2020, 257(5):60-70. (He Z Y, Song X G. The mechanism and enlightenment of digital economy promoting employment-Thinking after the coronavirus epidemic. Economist, 2020, 257(5):60-70.)
[19] 胡放之, 杨金磊. 数字经济对就业的影响研究——基于湖北新就业形态发展现状的调查. 湖北社会科学,2021, (1):80-86. (Hu F Z, Yang J L. Research on the impact of digital economy on employment-Based on the investigation of the development of Hubei's new employment forms. Hubei Social Sciences, 2021, (1):80-86.)
[20] Wu B Z, Yang W G. Empirical test of the impact of the digital economy on China's employment structure. Finance Research Letters, 2022, (49):103-127.
[21] Geng Z C, He G S. Digital financial inclusion and sustainable employment:Evidence from countries along the belt and road. Borsa Istanbul Review, 2021, 21(3):307-316.
[22] 陈锡康, 杨翠红. 投入产出技术. 北京:科学出版社, 2011. (Chen X K, Yang C H. Input-Output Technique. Beijing:Science Press, 2011.)
[1] 刘鹏,余中东,李鑫茹,陈锡康. 最终品出口的拉动效应在单国与国际投入产出模型中的测算差异分析[J]. 系统科学与数学, 2017, 37(8): 1820-1827.
[2] 王会娟,陈锡康. 能源约束下产业结构调整对我国非农就业的影响--基于投入占用产出技术[J]. 系统科学与数学, 2014, 34(9): 1025-1034.
[3] 唐志鹏,刘卫东. 一类扩展的非竞争型区域间环境保护投入占用产出模型[J]. 系统科学与数学, 2013, 33(2): 159-170.
阅读次数
全文


摘要